^{16,17} Энергетический спектр и оптические переходы в изомерах фуллерена С₈₀

© Б.В. Лобанов, А.И. Мурзашев

Марийский государственный университет, Йошкар-Ола, Россия E-mail: nanotubes59@mail.ru

(Поступила в Редакцию 3 сентября 2012 г.)

В рамках модели Шубина-Вонсовского-Хаббарда вычислен энергетический спектр всех изомеров фуллерена C_{80} . На основе этого вычислены их спектры оптического поглощения. Спектр оптического поглощения, вычисленный для эндоэдральных фуллеренов $Ca@C_{80}$, $Ba@C_{80}$ и $Sr@C_{80}$, симметрии I_h , обнаруживает хорошее согласие с экспериментальными данными. Это обстоятельство позволяет сделать вывод, что спектры оптического поглощения для других изомеров, экспериментальных данных по которым нет, полученные в настоящей работе, могут служить для их идентификации.

1. Введение

Известно [1], что наиболее стабильными изомерами фуллеренов являются те, которые подчиняются правилу изолированных пятиугольников, то есть те, в которых все пятиугольники окружены шестиугольниками. Среди множества изомеров фуллерена С80 этому правилу подчиняются всего лишь семь: № 1 (D_{5d}) , № 2 (D_2) , № 3 (C_{2v}) , № 4 (D_3) , № 5 (C_{2v}) , № 6 (D_{5h}) и № 7 (*I_h*) [2] (в скобках указана группа симметрии, к которой относятся изомеры). Диаграммы Шлегеля перечисленных изомеров представлены на рис. 1. Самую высокую симметрию из перечисленных фуллеренов имеет № 7 (І_h), однако несмотря на это, он в чистом виде не наблюдается и существует только в виде эндоэдральных [3] фуллеренов, то есть фуллеренов с инкапсулированными внутрь атомами металлов [4]. Изомер № 6 (D_{5h}) , также как и № 7 (I_h) , выделен только в виде эндоэдрального металлофуллерена Ti₂@C₈₀. Два изомера фуллерена С₈₀ № 1 (D_{5d}) и № 2 (D_2) выделены в чистом виде. Что же касается изомеров No 3 (C_{2v}) , № 4 (D_3), № 5 (C_{2v}), то, судя по литературе, они не выделены и на данный момент неясно, в каком виде они существуют. Таким образом, остро стоит проблема

Рис. 1. Диаграммы Шлегеля изомеров фуллерена С₈₀.

идентификации, разделения изомеров фуллерена C_{80} . Очевидно, что эта задача может быть решена путем нахождения из структурного их строения свойств, которые могут быть измерены экспериментально, в частности спектра оптического поглощения. Спектр оптического поглощения может быть получен из энергетического спектра.

Ранее нами было показано, что углеродные наносистемы — фуллерены и углеродные нанотрубки — необходимо описывать в рамках модели Хаббарда. Это определяется их электронным строением. В этих системах углерод находится в sp^2 -гибридизированном состоянии: три гибридные орбитали формируют остов, а негибридная *р*-орбиталь представляет собой частично локализованное состояние с одним электроном, *п*-электроном. В таком случае встает проблема учета кулоновского взаимодействия электронов на одном узле. Последние исследования [5] показали, что в углеродных наносистемах это взаимодействие велико и может достигать значений $\sim 10 \, \text{eV}$. А это означает, что такую подсистему *п*-электронов необходимо описывать в рамках модели Шубина-Вонсовского-Хаббарда (ШВХ) [6,7]. Ранее такое описание позволило нам получить энергетические спектры и спектры оптического поглощения фуллеренов С₆₀ [8], С₇₀ [9] и эндоэдрального фуллерена Са@С72 [10]. Хорошее согласие наших результатов с экспериментальными данными позволяет надеяться на успешность подобной программы и для изучения изомеров фуллерена С₈₀.

2. Модель и метод

Следуя [8–10], систему будем описывать стандартной моделью ШВХ [7]

$$H = \varepsilon \sum_{i,\sigma} n_{i,\sigma} + B \sum_{i,j,\sigma} (a_{i\sigma}^+ a_{j\sigma} + a_{j\sigma}^+ a_{i\sigma}) + U \sum_{i,\sigma} n_{i,\uparrow} n_{n,\downarrow}.$$
(1)

Здесь ε — собственная энергия электрона, U — энергия кулоновского взаимодействия на одном узле, B-интеграл

перескока между соседними узлами, $n_{i,\sigma} = a_{i,\sigma}^+ a_{i,\sigma}$ — оператор числа частиц в узле *i* со спином σ , $a_{i\sigma}^+$ и $a_{i\sigma}$ операторы рождения и уничтожения электронов, соответственно со спином σ , на *i*-том узле. В (1) суммирование по *i* выполняется по всем атомам системы, а по *j* (во втором слагаемом) — по узлам, соседним с *i*.

Уравнения движения для операторов рождения $a_{i\sigma}^+(\tau)$ (i = 1..N), взятых в представлении Гейзенберга с мнимым временем τ , запишутся в следующем виде

$$\frac{da_{i\sigma}^{+}(\tau)}{d\tau} = [H, a_{i\sigma}^{+}(\tau)]$$
$$= \varepsilon a_{i\sigma}^{+}(\tau) + B \sum_{j \neq 1} a_{j\sigma}^{+}(\tau) + U n_{i\bar{\sigma}}(\tau) a_{i\sigma}^{+}(\tau), \quad (2)$$

здесь N — число атомов в системе (в нашем случае N = 80), а $\bar{\sigma} = -\sigma$. Оператор числа частиц $n_{i,\sigma}$ представим как $n_{i,\bar{\sigma}} = \langle n_{i,\bar{\sigma}} \rangle + \Delta n_{i,\bar{\sigma}}$, где $\Delta n_{i,\bar{\sigma}}$ — оператор флуктуации числа частиц, $\langle n_{i,\bar{\sigma}} \rangle$ — среднее число электронов в узле *i* со спином $\bar{\sigma}$. Тогда (2) перепишется

$$\frac{da_{i\sigma}^{+}(\tau)}{d\tau} = \varepsilon a_{i\sigma}^{+}(\tau) + B \sum_{j \neq 1} a_{j\sigma}^{+}(\tau) + U\Delta n_{i\bar{\sigma}}(\tau) a_{i\sigma}^{+}(\tau),$$
(3)

здесь суммирование по j, как и в (2), идет по узлам, соседним с i, а $\varepsilon_i = \varepsilon + U\langle n_{i,\bar{\sigma}} \rangle$.

Введем представление типа представления взаимодействия [8]

$$a_{i\sigma}^{+} = \exp(H_0\tau)\tilde{a}_{i\sigma}^{+}(\tau)\exp(-H_0\tau),$$

$$\Delta n_{i\bar{\sigma}} = \exp(H_0\tau)\Delta n_{i\bar{\sigma}}^{+}(\tau)\exp(-H_0\tau)$$
(4)

где

$$H_0 = \sum_{i,\sigma} \varepsilon_i n_{i,\sigma} + B \sum_{i,j,\sigma} (a^+_{i\sigma} a_{j\sigma} + a^+_{j\sigma} a_{j\sigma}).$$
(5)

Используя известное для фермиевских операторов тождество $n_{i,\sigma} = n_{i,\sigma}^2$, легко показать, что в приближении статических флуктуаций [8,11,12] операторы $\tilde{a}_{i\sigma}^+$ и $\Delta \tilde{n}_{i\sigma} \tilde{a}_{i\sigma}^+(\tau)$ в представлении типа взаимодействия удовлетворяют следующим уравнениям

$$\begin{cases} \frac{d\tilde{a}_{i\sigma}^{+}(\tau)}{d\tau} = U\left(\Delta\tilde{n}_{i\bar{\sigma}}\tilde{a}_{i\sigma}^{+}(\tau)\right) \\ \frac{d\left(\Delta\tilde{n}_{i\bar{\sigma}}\tilde{a}_{i\sigma}^{+}(\tau)\right)}{d\tau} = U\left(1 - 2\langle n_{i\bar{\sigma}}\rangle\right)\left(\Delta\tilde{n}_{i\bar{\sigma}}\tilde{a}_{i\sigma}^{+}(\tau)\right) \\ + U\langle n_{i\bar{\sigma}}\rangle\left(1 - \langle n_{i\bar{\sigma}}\rangle\right)\tilde{a}_{i\sigma}^{+}(\tau). \end{cases}$$
(6)

Решив (6) и перейдя с помощью (4) в гейзенберговское представление, получим

$$a_{i\sigma}^{+}(\tau) = \bar{a}_{i\sigma}^{+}(\tau) \Big\{ (1 - \langle n_{i\bar{\sigma}} \rangle) \exp(-\langle n_{i\bar{\sigma}} \rangle U\tau) \\ + \langle n_{i\bar{\sigma}} \rangle \exp((1 - \langle n_{i\bar{\sigma}} \rangle) U\tau) \Big\} + \Delta n_{i\bar{\sigma}}(0) \bar{a}_{i\sigma}^{+}(\tau) \\ \times \Big\{ \exp((1 - \langle n_{i\bar{\sigma}} \rangle) U\tau) - \exp(-\langle n_{i\bar{\sigma}} \rangle U\tau) \Big\}.$$
(7)

Здесь $\bar{a}^+_{i\sigma}(\tau) = \exp(H_0\tau)a^+_{i\sigma}(0)\exp(-H_0\tau)$, уравнения движения для них следующие:

$$\frac{d}{d\tau}\bar{a}^+_{i\sigma}(\tau) = \varepsilon_i\bar{a}^+_{i\sigma}(\tau) + B\sum_{j\neq 1}\bar{a}^+_{i\sigma}(\tau).$$
(8)

В (8) i = 1..80, а по j суммирование во втором слагаемом в правой части идет по узлам, соседним с i. Видно, что (8) представляет собой систему из 80 линейных дифференциальных уравнений первого порядка. Начальные условия для нее следующие: $\bar{a}_{i\sigma}^+(\tau) = a_{i\sigma}^+$, где $a_{i\sigma}^+$ операторы в представлении Шредингера.

Уравнения (6) и выражение (7) являются одинаковыми для всех систем. Особенность, отличие системы от других определяется уравнениями (8), а именно слагаемыми $B \sum_{j \neq 1} \bar{a}_{i\sigma}^+(\tau)$. Эти слагаемые определяют то, как атомы связаны друг с другом. Именно уравнениями (8) в наших расчетах будут отличаться друг от друга различные изомеры исследуемого фуллерена C₈₀.

Системы уравнений вида (8), разные для разных изомеров, нами решались с помощью пакета прикладных программ maple. Подстановкой полученных результатов в (7) нами были найдены выражения для операторов $a_{i\sigma}^+(\tau)$ в представлении Гейзенберга для различных изомеров (ввиду их громоздкости и большого их количества эти выражения мы приводить не будем). Зная выражения для $a_{i\sigma}^+(\tau)$, можно вычислить антикоммутаторные функции Грина $G_i(\tau) = \langle [a_{i\sigma}^+(\tau), a_{i\sigma}(0)] \rangle$. В системах с конечным числом атомов интерес представляет суммарная (просуммированная по всем узлам системы) функция Грина

$$G(au) = \sum_{j=1}^{80} G_i(au),$$

полюса Фурье-образов которой и определяют энергетический спектр. Фурье-образы этой функции Грина для разных изомеров, получаемые в рамках описанного выше метода, имеют следующий вид:

$$G(\omega) = \frac{i}{2\pi} \sum_{j=1}^{P} \frac{M_j}{\omega - E_j}.$$
(9)

Здесь E_j — определяют энергетические уровни системы, а M_j — их кратность вырождения, а P — числа, разные для разных изомеров, определяющие число энергетических уровней системы. Анализ показывает, что все уровни можно разбить на две группы, состоящие из P/2уровней, определяемые выражениями вида: $E_j = \alpha_j B + \varepsilon$ и $E_j = \alpha_j B + \varepsilon + U$, где α_j — числа. Причем, вследствие того, что электронная подсистема оказывается сильно коррелированной [13], уровни $E_j = \alpha_j B + \varepsilon$ с кратностью вырождения M_j оказываются занятыми не $2M_j$ электронами (M_j со спином "верх" и M_j со спином "вниз"), а M_j электронами с произвольной ориентацией [8–10]. Собственная энергия электронов є находится из закона сохранения частиц

$$2\sum_{i=1}^{80} \langle n_i \rangle = 80,$$
 (10)

где $\langle n_i \rangle$ находятся как аналитическое продолжение $G_i(\omega)$ [14]. После этого (10) переписывается в виде

$$\sum_{j=1}^{P} 2M_j f(E_j) = 80, \tag{11}$$

здесь f(x) — функция фермиевского распределения.

3. Результаты и обсуждение

Прежде чем перейти к обсуждению результатов расчетов, относящихся к конкретным изомерам, отметим, что в работах [8–10] было показано, что параметры модели ШВХ для углеродных наносистем следует брать следующими: B = -1 eV и U = 7.0 eV. При получении результатов, изложенных ниже, мы использовали именно эти значения.

Кроме этого, следует отметить еще одно обстоятельство. Дело в том, что большинство изомеров фуллерена С₈₀ в виду своей нестабильности не существуют в чистом виде. Они существуют в виде эндоэдральных фуллеренов [3], внутрь которых внедрен один или несколько атомов металла. Очевидно, что при этом происходит перестройка электронной структуры. Полной ясности о переносе заряда и перестройке электронной структуры фуллеренов при внедрении в них металлов нет.

Наиболее простым подходом к этому вопросу является положение о том, что в соединениях вида $M_k@C_{80}$, где М есть атом металла, что в фуллереновую оболочку переходит m = kv электронов металла; здесь v валентность металла M, но не более 6. При этом полагается, что изменением структуры энергетических уровней фуллереновой оболочки можно пренебречь. Конечно же, такое понимание является упрощенным, потому как в металлах с валентностью > 1 может иметь место гибридизация высших занятых орбиталей металла с *п*-электронами фуллерена [1], что в рамках такого подхода не учитывается. Кроме того, наличие внедренных атомов изменяет симметрию системы, и вследствие этого интегралы перескока по С-С связям фуллерена становятся разными для различных пар узлов. Но это изменение обычно колеблется в пределах 2-3% и будет приводить к расщеплению или смещению некоторых энергетических уровней на величину ~ 0.01-0.03 eV, что имеет место в фуллерене С₆₀ при учете различия длин связей, как было показано нами в [8]. Очевидно, что это не скажется существенным образом на спектрах оптического поглощения, расчету которых посвящена наша работа. В пользу этого говорят результаты наших работ [8-10], где расчет в рамках такого (достаточно упрощенного) подхода дает хорошее согласие с

Рис. 2. Спектр оптического поглощения изомера № 1 (D_{5d}) .

Таблица 1. Энергетический спектр изомера *D*_{5d} № 1

$C_{80} - D_{5d}$						
E_n, eV	M_n	E_n, eV	M_n	E_n, eV	M_n	
-6.337	1	-1.975	1	2.809	2	
-6.191	1	-1.937	1	2.861	1	
-6.133	2	-1.982	1	2.932	2	
-5.863	2	-1.867	2	2.983	2	
-5.846	1	-1.710	2	2.966	2	
-5.719	2	-1.610	2	3.416	1	
-5.470	1	-1.545	2	3.488	1	
-5.390	2	-1.481	2	3.877	2	
-5.367	2	-1.124	2	3.919	2	
-5.111	2	-1.090	1	4.218	1	
-5.017	1	-1.072	2	4.249	1	
-4.911	2	-0.758	2	4.688	2	
-4.785	2	-0.723	2	4.832	2	
-4.654	2	-0.638	2	4.862	2	
-4.491	2	-0.535	1	4.934	2	
-4.337	5	0.663	1	5.025	1	
-4.191	2	0.809	1	5.063	1	
-4.139	1	0.866	2	5.108	1	
-4.068	2	1.137	2	5.132	2	
-4.017	2	1.154	1	5.289	2	
-4.004	2	1.281	2	5.389	2	
-3.584	1	1.529	1	5.455	2	
-3.511	1	1.609	2	5.519	2	
-3.123	2	1.632	2	5.876	2	
-3.080	2	1.889	2	5.909	1	
-2.782	1	1.983	1	5.928	2	
-2.751	1	2.089	2	6.242	2	
-2.311	2	2.215	2	6.277	2	
-2.168	2	2.346	2	6.362	2	
-2.138	2	2.509	2	6.465	1	
-2.065	2	2.663	5			

экспериментальными данными. Поэтому в дальнейших расчетах мы будем полагать, что энергетический спектр исследуемых нами систем при внедрении в них атомов металла существенным образом не меняется, а меняется лишь количество электронов в фуллереновой оболочке.

Изложим результаты наших расчетов, касающиеся различных изомеров фуллерена С₈₀.

3.1. Изомеры № 1 (*D*_{5d}) и № 2 (*D*₂).

Эти изомеры выделены в чистом виде. В энергетическом спектре изомера D_{5d} имеется 92 уровня. Энергетическая щель между нижней вакантной молекулярной орбиталью (НВМО) и верхней занятой молекулярной орбиталью (ВЗМО) составляет 1.20 eV. Значения энергий уровней приведены в табл. 1. На рис. 2 показан спектр оптического поглощения. Видно, что имеются четыре максимума при 470, 520, 640 и 780 nm.

Таблица 2. Энергетический спектр изомера D₂ № 2 $C_{80} - D_2$

E_n, eV	M_n							
-6.274	1	-3.353	2	0.726	1	3.409	2	
-6.241	1	-3.127	2	0.759	1	3.647	2	E_n, eV
-6.185	1	-2.920	2	0.815	1	3.873	1	-6.522
-6.121	1	-2.889	1	0.879	1	4.079	1	-6.353
-6.087	1	-2.868	1	0.913	1	4.111	1	-6.342
-6.082	1	-2.833	1	0.918	1	4.132	1	-6.325
-6.034	1	-2.769	1	0.966	1	4.167	1	-6.033
-5.791	1	-2.712	1	1.209	1	4.231	1	-6.015
-5.752	1	-2.683	1	1.248	1	4.288	1	-5.995
-5.733	1	-2.629	1	1.267	1	4.317	1	-5.989
-5.701	1	-2.629	1	1.299	1	4.317	1	-5.930
-5.567	1	-2.616	1	1.433	1	4.371	1	-5.608
-5.455	1	-2.583	1	1.545	1	4.384	1	-5.58
-5.344	1	-2.535	1	1.656	1	4.417	1	-5.5/
-5.292	1	-2.512	1	1.708	1	4.465	1	-5.512
-5.286	1	-2.500	1	1.714	1	4.488	1	-5.43
-5.277	1	-2.306	1	1.723	1	4.694	1	-5.104
-5.277	1	-2.143	1	1.773	1	4.857	1	-4.98°
-5.165	1	-2.116	1	1.835	1	4.884	1	-4.96
-5.031	1	-2.066	1	1.969	1	4.934	1	-4.965
-4.916	1	-1.991	1	2.000	1	5.009	1	-4.958
-4.886	1	-1.923	1	2.084	1	5.077	1	-4.903
-4.828	1	-1.877	1	2.114	1	5.123	1	-4.902
-4.815	1	-1.706	1	2.172	1	5.294	1	-4.766
-4.779	1	-1.612	1	2.185	1	5.388	1	-4.522
-4.756	1	-1.578	1	2.220	1	5.422	1	-4.463
-4.690	1	-1.467	1	2.244	1	5.533	1	-4.458
-4.681	1	-1.395	1	2.309	1	5.605	1	-4.427
-4.623	1	-1.112	1	2.319	1	5.888	1	-4.380
-4.616	1	-1.093	1	2.377	1	5.907	1	-4.345
-4.357	1	-1.020	1	2.284	1	5.979	1	-4.34
-4.212	1	-0.997	1	2.643	1	6.003	1	-4.335
-3.993	1	-0.982	1	2.788	1	6.018	1	-4.30
-3.831	1	-0.728	1	3.007	2	6.272	1	-4.140
-3.768	2	-0.694	1	3.169	2	6.306	1	-4.08
-3.663	2	-0.661	1	3.232	2	6.339	1	-3.869
-3.590	2	-0.509	1	3.337	2	6.491	1	-3.437

Рис. 3. Спектр оптического поглощения изомера № 2 (*D*₂).

Таблица 3. Энергетический спектр изомера С₂ № 3

$C_{80} - C_{2v}$							
E_n, eV	M_n	E_n, eV	M_n	E_n, eV	M_n	E_n, eV	M_n
-6.522	1	-3.327	1	0.647	1	3.563	1
-6.353	1	-3.268	1	0.628	1	3.673	1
-6.342	1	-3.195	1	0.675	1	3.732	1
-6.325	1	-2.787	1	0.967	1	3.805	1
-6.033	1	-2.769	1	0.985	1	4.213	1
-6.015	1	-2.628	1	1.005	1	4.230	1
-5.995	1	-2.522	2	1.011	1	4.372	1
-5.989	1	-2.343	1	1.069	1	4.478	2
-5.930	1	-2.315	1	1.392	1	4.657	1
-5.608	1	-2.279	1	1.413	1	4.685	1
-5.587	1	-2.258	1	1.428	1	4.721	1
-5.571	1	-2.230	1	1.486	1	4.742	1
-5.514	1	-2.170	1	1.563	2	4.769	1
-5.437	2	-2.177	1	1.565	1	4.820	1
-5.435	1	-2.089	1	1.896	1	4.823	1
-5.104	1	-1.991	1	2.015	1	4.911	1
-4.985	1	-1.979	1	2.035	2	5.009	1
-4.965	1	-1.941	1	2.042	1	5.020	1
-4.965	1	-1.924	1	2.096	1	5.059	1
-4.958	1	-1.904	1	2.097	1	5.076	1
-4.903	2	-1.843	1	2.098	1	5.096	1
-4.902	1	-1.630	1	2.234	1	5.157	1
-4.766	1	-1.587	1	2.478	1	5.369	1
-4.522	1	-1.574	1	2.537	1	5.413	1
-4.463	1	-1.552	1	2.542	1	5.426	1
-4.458	1	-1.464	1	2.573	2	5.448	1
-4.427	2	-1.409	1	2.619	1	5.536	1
-4.380	1	-1.399	1	2.650	1	5.591	1
-4.349	1	-1.251	1	2.659	1	5.602	1
-4.341	1	-1.096	1	2.661	1	5.749	1
-4.339	1	-1.041	1	2.663	1	5.904	1
-4.337	1	-0.967	1	2.695	1	5.959	1
-4.305	1	-0.862	1	2.859	1	6.033	1
-4.140	1	-0.819	1	2.915	1	6.138	1
-4.085	1	-0.808	2	3.019	1	6.181	1
-3.869	1	-0.788	1	3.130	1	6.192	2
-3.437	1	0.478	1	3.164	1	6.212	1

Рис. 4. Спектр оптического поглощения изомера № 3 (C_{2v}) .

Таблица 4. Энергетический спектр изомера D₃ № 4

E_n , eV	M_n	E_n , eV	M_n	E_n, eV	M_n	E_n, eV
						-6.522
-6.465	1	-2.192	2	2.599	2	-6.348
-6.295	2	-2.189	1	2.665	1	-6.340
-6.256	1	-2.094	2	2.666	1	-6.333
-5.978	2	-1.956	1	2.712	2	-6.024
-5.925	2	-1.878	2	2.720	1	-5.997
-5.861	1	-1.863	1	2.757	2	-5.995
-5.589	1	-1.799	2	2.848	1	-5.961
-5.516	2	-1.653	1	2.984	2	-5.593
-5.481	1	-1.530	2	3.236	1	-5.592
-5.377	1	-1.419	2	3.371	1	-5.556
-5.338	2	-1.373	1	3.588	2	-5.495
-5.063	1	-1.346	1	3.920	2	-5.478
-5.013	2	-1.121	2	4.162	1	-5.435
-4.884	2	-0.908	2	4.169	1	-5.434
-4.851	1	-0.822	1	4.511	2	-5.039
-4.737	2	-0.798	2	4.683	1	-4.985
-4.729	1	-0.734	1	4.741	2	-4.966
-4.465	2	-0.691	1	4.769	1	-4.963
-4.401	2	0.535	1	4.808	2	-4.955
-4.335	1	0.705	2	4.811	1	-4.944
-4.334	1	0.744	1	4.906	2	-4.902
-4.288	2	1.022	2	5.044	1	-4.838
-4.279	1	1.075	2	5.122	2	-4.322
-4.243	2	1.139	1	5.137	1	-4.4/9
-4.152	1	1.410	1	5.201	2	-4.42/
-4.016	2	1.484	2	5.347	1	-4.400
-3.764	1	1.519	1	5.469	2	-4.309
-3.629	1	1.623	1	5.580	2	-4.551
-3.412	2	1.662	2	5.627	1	-4.342
-3.079	2	1.937	1	5.654	1	-4.339
-2.838	1	1.987	2	5.879	2	-4.314
-2.830	1	2.116	2	6.092	2	-4.140
-2.489	2	2.149	1	6.178	1	-3.990
-2.317	1	2.263	2	6.202	2	-3.924
-2.259	2	2.271	1	6.266	1	_3 810
-2.230	1	2.535	2	6.309	1	-3.664

Рис. 5. Спектр оптического поглощения изомера N₂ 4 (D_3) .

Таблица 5. Энергетический спектр изомера C_{2v} № 5

$C_{80} - C_{2v}$								
E_n, eV	M_n	E_n, eV	M_n	E_n, eV	M_n	E_n, eV	M_n	
-6.522	1	-3.382	1	0.652	1	3.336	1	
-6.348	1	-3.232	1	0.659	1	3.618	1	
-6.340	1	-2.964	1	0.667	1	3.768	1	
-6.333	1	-2.788	1	0.976	1	4.036	1	
-6.024	1	-2.717	1	1.003	1	4.212	1	
-5.997	1	-2.689	1	1.005	2	4.283	1	
-5.995	2	-2.598	1	1.039	1	4.311	1	
-5.961	1	-2.522	1	1.407	1	4.402	1	
-5.593	1	-2.373	1	1.408	1	4.478	1	
-5.592	1	-2.309	1	1.444	1	4.627	1	
-5.556	1	-2.261	1	1.505	1	4.691	1	
-5.495	1	-2.254	1	1.522	1	4.739	1	
-5.478	1	-2.217	1	1.565	1	4.746	1	
-5.435	1	-2.202	1	1.566	1	4.783	1	
-5.434	1	-2.179	1	1.961	1	4.798	1	
-5.039	1	-2.172	1	2.015	1	4.821	1	
-4.985	1	-1.981	1	2.034	1	4.828	1	
-4.966	1	-1.972	1	2.037	1	5.019	1	
-4.963	1	-1.962	1	2.045	1	5.028	1	
-4.955	1	-1.904	1	2.056	1	5.038	1	
-4.944	1	-1.853	1	2.098	1	5.096	1	
-4.902	2	-1.789	1	2.098	1	5.147	1	
-4.838	1	-1.587	2	2.161	1	5.211	1	
-4.522	1	-1.565	1	2.478	1	5.413	2	
-4.479	1	-1.548	1	2.521	1	5.435	1	
-4.427	2	-1.532	1	2.573	2	5.452	1	
-4.406	1	-1.430	1	2.594	1	5.468	1	
-4.369	1	-1.337	1	2.631	1	5.569	1	
-4.351	1	-1.312	1	2.649	1	5.663	1	
-4.342	1	-1.157	1	2.658	1	5.688	1	
-4.339	2	-1.006	1	2.660	1	5.843	1	
-4.314	1	-0.894	1	2.661	1	5.994	1	
-4.140	1	-0.870	1	2.686	1	6.106	1	
-3.996	1	-0.839	1	2.859	1	6.129	1	
-3.924	1	-0.808	1	3.004	1	6.161		
-3.918	1	-0.807	1	3.076	1	6.192		
-3.819	1	-0.802	1	3.082	1	6.193	1	
-3.664	1	0.478	1	3.181	1	6.198	1	

В энергетическом спектре изомера D_2 содержится 148 уровней. Щель между НВМО-ВЗМО составляет 1.235 eV. Значения энергий уровней и их кратности вырождения даны в табл. 2. На рис. 3 показан спектр

Рис. 6. Спектр оптического поглощения изомера № 5 (C_{2v}) .

$C_{80} - D_{5h}$						
E_n, eV	M_n	E_n, eV	M_n	E_n, eV	M_n	
-6.235	1	-1.929	2	2.860	2	
-6.053	3	-1.891	2	2.881	2	
-5.709	2	-1.693	2	2.946	2	
-5.708	1	-1.617	2	2.948	2	
-5.707	2	-1.502	2	3.147	2	
-5.316	1	-1.299	2	3.292	2	
-5.269	2	-1.299	1	3.468	2	
-5.208	2	-1.260	2	3.624	2	
-5.147	2	-1.049	2	4.323	2	
-4.697	1	-1.025	2	4.499	2	
-4.679	2	-0.606	2	4.689	2	
-4.667	2	-0.583	2	4.765	2	
-4.656	2	-0.535	1	4.965	1	
-4.615	2	-0.519	2	5.027	2	
-4.235	2	0.765	1	5.070	2	
-4.139	2	0.947	3	5.109	2	
-4.119	2	1.290	2	5.307	2	
-4.054	2	1.292	1	5.383	2	
-4.051	2	1.293	2	5.498	2	
-3.853	2	1.684	1	5.700	2	
-3.708	2	1.731	2	5.701	1	
-3.532	2	1.792	2	5.739	2	
-3.376	2	1.853	2	5.950	2	
-2.677	2	2.303	1	5.975	2	
-2.500	2	2.321	2	6.394	2	
-2.311	2	2.333	2	6.417	2	
-2.235	2	2.344	2	6.466	1	
-2.035	1	2.385	2	6.481	2	
-1.973	2	2.765	2			

Таблица 6.	Энергетический	спектр	изомера	D_{5h}	Nº 6
------------	----------------	--------	---------	----------	------

оптического поглощения. Видно, что имеются четыре полосы поглощения при 440, 520, 650 и 760 nm. При $\lambda > 800$ nm при 850 и 960 nm имеются еще две слабо выраженных максимума.

3.2. Изомеры № 3 (C_{2v}) , № 4 (D_3) , № 5 (C_{2v}) .

Эти изомеры не обнаружены ни в чистом виде, ни в виде эндоэдральных фуллеренов. Согласно нашим расчетам, энергетический спектр $C_{2v} \mathbb{N}_2$ 3 должен состоять из 148 уровней. Щель между HBMO–B3MO составляет 1.266 eV. Энергии уровней, и кратности их вырождения приведены в табл. 3. На рис. 4 приведен спектр оптического поглощения этого изомера. Видно, что имеются 6 полос поглощения при 480, 520, 560, 600, 680 и 840 nm, причем, если этот изомер все же будет обнаружен, то первые четыре полосы, скорее всего, сольются в одну при 540–560 nm.

Значения энергий уровней и их кратности вырождения изомера $D_3 \ N_{\mbox{\scriptsize 0}} 4$ приведены в табл. 4. В спектре 108 уровней, щель между НВМО-ВЗМО составляет 1.255 eV. Спектр оптического поглощения, как видно из рис. 5, состоит из 4 полос 540, 650, 760 и 820 nm. Из рисунка видно, что последние две полосы могут слиться в одну — 800 nm.

Согласно нашим расчетам, энергетический спектр C_{2v} № 5 должен состоять из 152 уровней (табл. 5). Щель между НВМО-ВЗМО составляет 1.281 eV. Спектр оптического поглощения, представленный на рис. 6, содержит 5 полос поглощения при 480, 530, 620, 680 и 830 nm. Первые две полосы и третья с четвертой в эксперименте, если все же удастся обнаружить этот изомер в чистом виде, могут сливаться.

3.3. Изомер № 6 (*D*_{5h}).

Согласно литературе, существует только в виде эндоэдрального металлофуллерена Ti₂@C₈₀. В энергетическом спектре этого изомера содержится 86 уровней. Щель между HBMO-B3MO составляет 1.284 eV. Значения энергий уровней и их кратности вырождения представлены в табл. 6. На рис. 7 приведены спектры оптического поглощения чистого изомера и изомеров при переносе заряда от металла в фуллереновую оболочку в количестве двух, трех и четырех электронов. Спектр оптического поглощения чистого изомера содержит 5 полос поглощения при 440, 480, 530, 660 и 800 nm. При добавлении в фуллереновую оболочку электронов появляется максимум при 1200 nm и начинает проявляться максимум в области 880 nm. Видно, что интенсивность максимума при 880 nm напрямую связана с интенсивностью максимума при 800 nm. При увеличении переноса заряда интенсивность максимума при 880 nm растет, а интенсивность максимума при 800 nm падает. Такое поведение, по всей видимости, связано со следующим обстоятельством. Первый незанятый энергетический уровень при 0.765 eV имеет кратность вырождения 1, а второй при 0.947 eV — кратность вырождения 3. При переносе в фуллереновую оболочку двух электронов первый уровень становится заполненным полностью, а второй на треть. При росте переноса заряда от 2 до 4

Рис. 7. Спектры оптического поглощения изомера № 6 (D_{5h}) при разном переносе заряда в фуллереновую оболочку. Для чистого изомера — "a" перенос заряда 2е — "b", перенос заряда 3е — "c", перенос заряда 4е — "d".

Таблица 7. Энергетический спектр изомера *I_h* № 6

$C_{80}-I_h$							
E_n, eV	M_n	E_n, eV	M_n				
-6.207	1	0.793	1				
-6.025	3	0.975	3				
-5.680	5	1.319	5				
-5.289	3	1.711	3				
-5.119	4	1.880	4				
-4.669	5	2.330	5				
-4.584	4	2.415	4				
-4.207	6	2.793	6				
-3.825	8	3.175	8				
-3.481	4	3.519	4				
-2.494	4	4.506	4				
-2.207	6	4.793	6				
-2.007	3	4.993	3				
-1.589	8	5.411	8				
-1.272	5	5.728	5				
-1.008	4	5.991	4				
-0.556	4	6.444	4				
-0.507	3	6.492	3				

 12^* Физика твердого тела, 2013, том 55, вып. 4

число электронов на уровне 0.947 eV начинает расти от одного до трех, что будет подавлять переходы на этот уровень с нижележащих занятых уровней, которые, по всей видимости, и формируют максимум при 800 nm. При этом интенсивность переходов с этого уровня на незанятые верхние, формирующие полосу поглощения при 880 nm, будет расти. Такое поведение максимумов

Рис. 8. Энергетический спектр изомера No 7 (I_h) .

804

при 800 и 880 nm может позволить путем экспериментального наблюдения сделать выводы о величине переноса заряда в рассматриваемой системе.

В заключение этого подраздела отметим, что, согласно [15], в образцах этого фуллерена существуют два изомера D_{5h} и I_h в соотношении 9:1. Этот вопрос более подробно обсудим в следующем разделе.

3.4. Изомер № 7 (І_h).

Энергетический спектр этого изомера содержит 36 уровней, то есть в (9) P = 36. Полученный энергетический спектр приведен на рис. 8, значения энергий уровней и кратности вырождения в табл. 7. Энергетическая щель между НВМО и ВЗМО составляет 1.30 eV. Значения энергий его уровней, и кратности вырождения приведены в табл. 7. Видно, что вследствие высокой симметрии кратности вырождения уровней велики. В чистом виде этот изомер не существует, а существует только в виде эндоэдральных фуллеренов, таких как Ca@C₈₀, Ba@C₈₀, Sr@C₈₀, Ti₂@C₈₀, La₂@C₈₀, Sc₃N@C₈₀ и Er_xSc_{3-x}N@C₈₀.

Исходя из предположения, что в фуллереновой оболочлочке имеется 82 электрона (в фуллереновую оболочку перешло 2 электрона), нами был вычислен спектр оптического поглощения соединений Ca@C₈₀, Ba@C₈₀ и Sr@C₈₀, которые, согласно [16], обладают симметрией I_h . Результаты приведены на рис. 9. В верхней части рисунка приведены экспериментально полученные спектры для указанных соединений [17]. Полученное хорошее совпадение подтверждает применимость нашего подхода.

Рис. 9. Спектры оптического поглощения изомера N₂ 7 (I_h) с переносом заряда 2е (нижний график) и экспериментальные данные из [17] (верхние графики).

Рис. 10. Спектры оптического поглощения изомера № 7 (I_h) при разном переносе заряда в фуллереновую оболочку. Для чистого изомера — "a", перенос заряда 2е — "b", перенос заряда 3е — "c", перенос заряда 4е — "d", перенос заряда 6е — "e".

Перенос заряда в изомерах La₂@C₈₀, Sc₃N@C₈₀ и Er_xSc_{3-x}N@C₈₀ имеет сложную природу, и, по всей видимости, не подчиняется простому правилу, описанному в начале этого раздела. Можно лишь утверждать, что его величина (переноса заряда) составляет от 3 до 6 электронов. Кроме того, в литературе нет экспериментальных данных по спектру оптического поглощения этих эндоэдральных фуллеренов. Поэтому мы на рис. 10 привели лишь спектр оптического поглощения чистого фуллерена симметрии I_h (рис. 10, *a*) и его эндоэдральных модификаций при переносе от инкапсулированных атомов металла в фуллереновую оболочку 2 (рис. 10, *b*) (что соответствует Ca@C₈₀, Ba@C₈₀ и Sr@C₈₀), 3 (рис. 10, *c*), 4 (рис. 10, *d*) и 6 (рис. 10, *e*) электронов. Чистый изомер I_h № 7 в спектре поглощения имеет пять максимумов при 480, 550, 630, 660 и 820 nm. Видно, что при добавлении в фуллереновую оболочку двух электронов и больше в спектре оптического поглощения появляются дополнительные полосы при 1150 и 1360 nm, а полоса при 630 nm при переносе заряда большем двух полностью исчезает. Дальнейшее увеличение переноса заряда приводит к плавному перетеканию максимума при 820 nm в максимум при 860 nm; при этом другие максимумы практически не меняются. Это обстоятельство, по всей видимости, объясняется точно так же, как и связь максимумов поглощения при 800 и 880 nm в изомере D_{5h} .

Что касается того, что фуллерен $Ti_2@C_{80}$, согласно [15], в образцах содержится как смесь изомеров симметрии I_h и D_{5h} в соотношении 9:1, то этот факт в спектрах оптического поглощения таких образцов должен отражаться тем, что в длинноволновой области будут иметь место максимумы при 1200, 1150 и 1350 nm. Интенсивность полос при 1150 и 1350 nm должна почти на порядок превышать интенсивность полосы при 1200 nm.

4. Заключение

Таким образом, в настоящей работе в рамках модели ШВХ получены энергетические спектры семи изомеров фуллерена C_{80} и их спектры оптического поглощения. Наши результаты, касающиеся спектров оптического поглощения эндоэдральных фуллеренов $Ca@C_{80}$, $Ba@C_{80}$ и $Sr@C_{80}$ хорошо совпадают с измеренными в эксперименте [17]. Это говорит о том, что наши результаты в определенной степени будут полезными при решении проблемы экспериментальной идентификации различных изомеров фуллерена C_{80} .

Список литературы

- Л.Н. Сидоров, М.А. Юровская, А.Я. Борщевский, И.В. Трушков, И.Н. Иоффе. Фуллерены. Экзамен, М. (2005). 687 с.
- [2] P.W. Fowler, D. E. Manolopoulos. An Atlas of Fullerenes. Clarendon Press, Oxford (1995). 416 p.
- [3] А.В. Елецкий. УФН 170, 115 (2000).
- [4] В.И. Коваленко, Л.Р. Мухаметшафикова. Структура и динамика молекулярных систем. Яльчик-2002. 1, 249, (2002).
- [5] T.O. Wehling, E. Sasioglu, C. Friedrich, A.I. Lichtenstein, M.I. Katsnelson, S. Blugel. Phys. Rev. Lett. 106, 236 805 (2011).
- [6] S.P. Schubin, S.V. Wonsowskii. Proc. Roy. Soc. A 145, 159 (1934).
- [7] J. Hubbard. Proc. Roy. Soc. A 276, 238 (1963). С60 я+Мир.
- [8] Г.И. Миронов, А.И. Мурзашев. ФТТ 53, 2273 (2011).
- [9] А.И. Мурзашев. Изв. вузов. Физика 55, 49 (2012).
- [10] А.И. Мурзашев. Междунар. зим. шк. физиков-теоретиков "Коуровка-XXIV" Тез. докл. (2012). С. 118.
- [11] В.В. Лоскутов, Г.И. Миронов, Р.Р. Нигматулин. ФНТ 26, 282 (1997).
- [12] Р.Р. Нигматулин, А.А. Хамзин, И.И. Попов. ЖЭТФ 141, 1 (2012).

- [13] Ю.А. Изюмов, Н.М. Плакида, Ю.Н. Скрябин. УФН 159, 621 (1989).
- [14] С.В. Тябликов. Методы квантовой теории магнетизма. Наука. М. (1975). 527 с.
- [15] B.P. Gao, M. Hasegawa, K. Okada, T. Tomiyama, T. Okazaki, K. Suenaga, H. Shinohara. J. Am. Chem. Soc. 123, 9679 (2001).
- [16] J. Ding, S. Yang. Angew. Chem. Int. Ed. Engl. 35, 2234 (1996).
- [17] T. John, S. Dennis, H. Shinohara. Appl. Phys. A 66, 243 (1998).