оз Экспериментальное определение времен, амплитуд и протяженности "циклов деформации" капель воды в воздухе

© Р.С. Волков, О.В. Высокоморная, Г.В. Кузнецов, П.А. Стрижак

Национальный исследовательский Томский политехнический университет E-mail: pavelspa@tpu.ru

Поступило в Редакцию 28 июля 2014 г.

Выполнено экспериментальное исследование закономерностей деформации движущихся в воздухе капель воды при умеренных числах Вебера (We < 7) с использованием высокоскоростной (времена задержки между кадрами менее 100 ns) кросскорреляционной регистрирующей аппаратуры. Установлены "циклы деформации" с характерными временами, амплитудами, протяженностью, а также формами капель. Определено влияние скоростей капель на основные характеристики "деформационных циклов".

В экспериментах [1-3] по исследованию процессов деформации капель воды с различными примесями при свободном падении в воздушной среде установлено несколько возможных форм капель и циклический характер их трансформации. Определены длительности циклов изменения характерных форм капель (представляют "периоды собственных колебаний" по терминологии [1-3]) t_d , а также влияние на t_d размеров последних. Но в [1-3] исследован лишь первый после отрыва от дозатора "цикл деформации" (под "циклом деформации" понимается интервал времени, в течение которого капля в процессе движения последовательно дважды принимает близкую к идентичной форму). Области применения результатов таких экспериментов ограничены малыми ($t_d \ll 1 \, s$) интервалами времени. В реальных практических приложениях характерные "времена жизни" капель воды много больше t_d. Анализ особенностей деформации капель типичных жидкостей при числах Вебера больше семи сложен вследствие высокой вероятности их дробления [4,5]. Представляет интерес анализ численных значений характеристик от 1 до 10 и более последовательных "циклов деформации" капель воды при We < 7.

50

Цель настоящей работы — экспериментальное определение основных характеристик (амплитуды, времена, протяженности) "циклов деформации" капель воды в воздухе при варьировании их размеров и скоростей в условиях умеренных чисел Вебера (We < 7).

Эксперименты проведены с видеорегистрацией процессов прохождения одиночными каплями воды расстояния 1 m от выходного сечения дозатора капель до уловителя (капли двигались вертикально вниз). Начальные размеры капель воды варьировались в диапазоне 3-6 mm. В качестве начального характерного размера капли принимался ее диаметр (d_0) при отрыве от дозатора. Эксперименты показали, что в этот момент времени капля имеет форму, близкую к сферической. Начальные скорости капель u_0 варьировались в диапазоне 0-3 m/s. Это позволяло обеспечивать выполнение условия We < 7 в измерительной области видеорегистрационного комплекса (скорости капель u не превышали 5 m/s).

В качестве основных элементов экспериментального стенда использовались: видеокамера (разрешение 1024×1024 пикселей, частота кадров до 10^5 fps); кросскорреляционная камера (разрешение 2048×2048 пикселей, частота кадров до 10^3 fps в секунду); двойной импульсный твердотельный лазер (длина волны 532 nm, энергия в импульсе не менее 70 mJ, длительность импульса не более 12 ns, частота повторения не более 15 Hz); синхронизирующий процессор (дискретизация сигналов не более 10 ns).

Капли воды в соответствии с заданными размерами d_0 и скоростью u_0 испускались из дозатора и перемещались под действием силы тяжести до уловителя. Процесс движения капель регистрировался видеокамерой. Проводилось 10 экспериментов для одного фиксированного размера и начальной скорости капель при прочих неизменных условиях. После обработки видеограмм на персональном компьютере выделялись периоды характерных "циклов деформации" капель. Расстояние между дозатором и уловителем разделялось на группу участков, характеризующих соответствующие "деформационные циклы" (с определением времени t_d и протяженности l_d каждого цикла). С использованием кросскорреляционной камеры, твердотельного импульсного лазера и синхронизатора проводились измерения размеров капель (выполнялись 10 экспериментов с идентичными первому этапу размерами и скоростями капель, но изображения капель фиксировались для одного "цикла деформации"). Каждая видеограмма разделялась

на расчетные области размерами 32×32 пикселей. В соответствии с [6,7] рассчитывался масштабный коэффициент γ (значения γ составили 0.01–0.1 mm/pix). С использованием алгоритмов [6,7] и методик [8,9] определялись условные (так как форма капель соответствует в основном эллипсоидам) максимальные диаметры капель в пикселях, а затем с применением коэффициента γ выполнялся их пересчет в миллиметры. Вычислялись максимальный поперечный (относительно направления движения) d_x , максимальный продольный d_y и абсолютный максимальный d_{max} размеры капли. Рассчитывались относительные переменные: $\Delta_x = (d_x - d_0)/d_0$, $\Delta_y = (d_y - d_0)/d_0$, $\Delta_{max} = (d_{max} - d_0)/d_0$. Систематические погрешности определения d_x , d_y и d_{max} в соответствии с методиками [7–9] составили 10⁻⁵ m.

По результатам обработки видеограмм кросскорреляционной камеры для выделенного "деформационного цикла" при вычисленных d_x , d_y и d_{\max} уточнялись значения t_d и l_d , полученные при съемке видеокамерой всего пройденного каплей расстояния. Систематические погрешности измерения времен t_d и расстояний l_d кросскорреляционным комплексом при $\gamma = 0.01-0.1$ mm/pix не превышали 10^{-5} s и 10^{-4} m соответственно.

Выполненные эксперименты при $d_0 = 3-6$ mm и $u_0 = 0-3$ m/s показали, что случайные погрешности вычисления d_x , d_y и d_{max} составили не более 5%, времен $t_d - 4\%$, а $l_d - 7\%$.

При обработке видеограмм выполненных экспериментов установлено, что капли воды в процессе движения от дозатора до уловителя совершают более 10 "деформационных циклов" с характерными временами $t_d \ll 1$ s и протяженностью каждого $l_d = 20-180$ mm. Удаление капель от дозатора характеризуется существенным повышением l_d и соответственно снижением t_d . Число индивидуальных (неповторяющихся по геометрии) форм капель в рамках одного из "циклов деформации" изменяется (уменьшается с каждым последующим циклом).

На рис. 1 приведено несколько типичных для первого "цикла деформации" (с момента отрыва от дозатора) форм капель при $d_0 = 5 \text{ mm}$ и скоростях *и*, соответствующих режиму свободного падения последних. Можно отметить хорошую корреляцию полученных изображений капель с результатами экспериментов [2]. В [2] выделено 6 характерных форм капель воды с размерами $d_0 \approx 5 \text{ mm}$ при свободном падении в воздухе. Аналогичные 6 форм капель установлены и в проведенных экспериментах (рис. 1). При этом достаточно хорошо согласуются с [2]

Рис. 1. Изображения капель воды в первом "цикле деформации" при свободном падении ($d_0 \approx 5 \text{ mm}$): *а* — проведенные авторами эксперименты; *b* — результаты экспериментов [2].

и интервалы времени между этими формами. Значения t_d в выполненных экспериментах при $d_0 = 5 \text{ mm}$ и $u_0 = 0 \text{ m/s}$ составили около 36 ms (в идентичных условиях [2] $t_d \approx 38 \text{ ms}$). Отличия t_d от результатов [2],

Средние экспериментальные значения t_d и l_d в зависимости от скорости на входе в "цикл деформации" u при $d_0 = 5$ mm

<i>u</i> , m/s	1.30	2.86	4.15	4.69	5.14
t_d , s	0.0394	0.0346	0.0309	0.02951	0.02751
l_d , mm	56.3	84.9	119.7	138.5	153.4

в первую очередь, обусловлены возможными отклонениями скоростей испускания дозатором капель. При проведении экспериментов [2] не фиксировались значения *u* на входе или выходе из первого "цикла деформации". Поэтому можно лишь по интервалам времени между характерными формами капель оценить скорости их перемещения в опытах [2]. Анализ видеограмм [2] показывает, что значения *u* отличаются от измеренных в данной работе на 5–8%.

Проведенные эксперименты показали, что с каждым последующим "циклом деформации" времена t_d снижаются, а значения амплитуд (Δ_x , Δ_y , Δ_{max}) изменения размеров капель возрастают. Это, главным образом, вызвано увеличением скоростей движения капель u. Так, на рис. 2 приведены изменения Δ_{max} , Δ_x , Δ_y при $d_0 = 5$ mm и скорости на входе в "цикл деформации" u = 3 m/s (вертикальными отрезками на кривых $\Delta_{max} = f(t)$, $\Delta_x = f(t)$ и $\Delta_y = f(t)$ показаны доверительные интервалы определения этих относительных характеристик). При варыровании d_0 и u в диапазонах 3-6 mm и u = 0-5 m/s значения Δ_{max} достигали 0.2 (можно считать это значение максимальным для рассматриваемых условий). Минимальные t_d и максимальные l_d составили 0.024 s и 178 mm. В таблице приведены соответствующие зависимости характерных значений t_d и l_d от скоростей движения капель.

Установлено, что увеличение размеров капель также существенно влияет на основные характеристики "циклов деформации" $(t_d, l_d \, \text{u} \, \Delta_{\max})$. Времена t_d и расстояния l_d кратно изменяются с ростом размеров от 3 до 6 mm. Амплитуды же деформации изменяются в пределах 10% (уменьшаются с ростом размеров и, как следствие, массы капель):

$$t_{d} = \frac{\pi}{4} \frac{\rho \delta^{2}}{\eta} \frac{1}{\sqrt{Lp - 5.25}}, \ \tau_{d} = \frac{t_{d}\eta}{\rho \delta^{2}}, \ \tau_{d} = \frac{0.83}{\sqrt{Lp}}, \ 3 \le Lp \le 3.7 \cdot 10^{5}, \ (1)$$

где ρ — плотность жидкости, kg/m³; δ — размер капли, mm; η — динамическая вязкость жидкости, kg/(m · s); Lp — число Лапласа

Рис. 2. Изменения Δ_{\max} , Δ_x (1) и Δ_y (2) при $d_0 = 5 \text{ mm}$ и u = 3 m/s.

 $(Lp = \delta \rho \sigma / \eta^2); \sigma$ — коэффициент поверхностного натяжения жидкости, kg/s²; τ_d — безразмерное время "собственных колебаний капель".

Видно, что время t_d зависит не только от размеров, но и от физических свойств жидкости (вязкость, поверхностное натяжение, плотность). Скорость перемещения капель и свойства газовой среды не учтены в выражениях (1).

Рис. 3. Характерные времена t_d при различных размерах капель воды: 1 — значения t_d , рассчитанные по формуле (1); 2 — аппроксимация результатов экспериментов для первого "цикла деформации" при свободном падении капли и скорости на входе в цикл u = 0.4 m/s; 3-6 — аппроксимации результатов экспериментов при скоростях u на входе в "циклы деформации" u = 1, u = 2.5, u = 3.5, u = 4.5 m/s соответственно.

На рис. З приведены результаты экспериментов по установлению времен t_d при варьировании d_0 в диапазоне от 3 до 6 mm. Также представлены t_d , вычисленные с использованием выражений (1) при $\delta = d_0$, $\rho = 10^3$ kg/m³, $\eta = 0.001023$ kg/(m·s), $\sigma = 0.0618$ kg/s².

Сравнение кривых 1 и 2 показывает, что экспериментальные времена первого "цикла деформации" t_d при скоростях u, соответствующих режиму свободного падения капель (u < 1 m/s), удовлетворительно согласуются с вычисленными по формуле (1). В то же время следует отметить, что времена t_d , полученные с использованием выражения (1), больше экспериментальных. Анализ видеокадров в момент отрыва капель от дозатора показал, что даже в пределах одного "деформационного цикла" скорости капель могут существенно изменяться. Так, на входе

в первый "цикл деформации" при $d_0 = 3 \text{ mm}$ значения *u* составляют 0.3–0.4 m/s, а на выходе из цикла уже достигают 0.6 m/s. С ростом размеров (как следствие, массы) капель скорости *u* значительно (до 1 m/s в пределах цикла) изменяются. Этим можно объяснить увеличение отклонений кривой 1 от кривой 2 с ростом d_0 (рис. 3).

Сравнение зависимостей 3-6 (рис. 3) показывает, что увеличение скоростей движения капель u приводит к заметному снижению характерных времен t_d , несмотря на рост сил сопротивления. Поэтому довольно сложно представить времена t_d , зависящие от u = f(t), и использовать выражения (1) для вычисления t_d при $u \gg 0$.

Выражения (1) сформулированы [2] для капель в форме сферы (использован множитель $\pi \delta^2/4$, характеризующий площадь тела сферической формы). Эксперименты показали, что в процессе деформации капля имеет сферическую форму не чаще, чем эллипсоид и другие тела вращения в пределах одного ,,деформационного цикла" с $t_d \ll 1$ s. Для максимально возможного приближения выражений (1) к реальным значениям t_d , скорее всего, целесообразно вычислять площадь поперечного сечения капель s_d в начале каждого цикла и учитывать ее изменение в дальнейшем ($s_d = f(t)$).

На основании результатов выполненных экспериментов можно сделать вывод о том, что характерные времена перехода от одной типичной формы капель к другой не превышают 0.01 s. Поэтому при решении задач гидродинамики и тепломассопереноса в условиях двухфазных капельных потоков принятие в качестве геометрической модели капли сферы является не более обоснованным, чем любой другой конфигурации из описанных выше (рис. 1). По этой причине при решении уравнений движения капель значения коэффициентов аэродинамического сопротивления с_d рационально принимать средними по всем конфигурациям одного цикла и учитывать динамику изменения c_d от цикла к циклу. Так, например, при численном анализе времен существования капель в разных формах и времен переходов между ними установлено, что при $u \approx 1 \text{ m/s}$ и $d_0 \approx 3 \text{ mm}$ средние значения коэффициента аэродинамического сопротивления c_d составляют около 0.28. С ростом скоростей движения капель до 5 m/s значения c_d увеличиваются до 0.31. В случае повышения начальных размеров капель d_0 до 6 mm ($u \approx 5$ m/s) значения с_d возрастают до 0.33. Следует отметить, что, например, для тел сферической формы значения c_d принимаются равными 0.47, а для так называемой "каплевидной"формы — не превышают 0.1. Поэтому

учет установленных изменений c_d очень важен для многих капельных технологий и этот эффект требует дальнейшего исследования.

Исследование выполнено за счет гранта Российского научного фонда (проект 14-39-00003).

Список литературы

- [1] Гонор А.Л., Ривкинд В.Я. // МЖГ. 1982. Т. 17. С. 86–159.
- [2] Дубровский В.В., Подвысоцкий В.В., Шрайбер А.А. // ИФЖ. 1990. Т. 58. № 5. С. 804–808.
- [3] Wierzba A. // Exper. in Fluids. 1990. V. 9. N 1. P. 59-64.
- [4] Shreiber A.A., Podvisotski A.M., Dubrovski V.V. // Atom. and Spr. 1996. V. 6. N 6. P. 667–692.
- [5] Flock A.K., Guildenbecher D.R., Chen J., Sojka P.E., Bauer H.J. // Int. J. of Mult. Flow. 2012. V. 47. P. 37–49.
- [6] Foucaut J.M., Stanislas M. // Meas. Sci. and Techn. 2002. V. 13. P. 1058–1071.
- [7] Damaschke N., Nobach H., Tropea C. // Experiments in Fluids. 2002. V. 32. N 2.
 P. 143–152.
- [8] Кузнецов Г.В., Стрижак П.А. // Письма в ЖТФ. 2014. Т. 40. В. 12. С. 11–18.
- [9] Волков З.С., Кузнецов Г.В., Стрижак П.А. // ЖТФ. 2014. Т. 84. В. 7. С. 15–23.