03;04;12 Электромагнитный рельсовый ускоритель — генератор сильных ударных волн в каналах

© С.В. Бобашев, Б.Г. Жуков, Р.О. Куракин, С.А. Поняев, Б.И. Резников

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: bgzhukov@mail.ioffe.ru

Поступило в Редакцию 28 апреля 2014 г.

Представлено экспериментальное исследование процессов, сопровождающих генерацию сильных ударных волн (УВ) в каналах электромагнитных рельсовых ускорителей (рельсотронов) при разгоне свободного плазменного поршня (без ударника). Образование УВ в канале рельсотрона и движение ударно-сжатого слоя, в отличие от классических ударных труб, происходит в достаточно сильном электрическом поле (до 300 V/cm). Эксперименты проводились при начальных давлениях газов в канале 25–500 Тогг. При давлениях 25 Тогг достигнуты числа Маха ударной волны 32 (в аргоне) и 16 (в гелии). При высокой концентрации заряженных частиц за ударной волной электрическое поле вызывает прохождение части разрядного тока через объем ударно-сжатого слоя и его интенсивное свечение, сравнимое с интенсивностью свечения плазменного поршня.

Разгон свободного плазменного поршня (ПП) в рельсотроне сопровождается генерацией в канале сильных ударных волн (УВ) с параметрами, трудно достижимыми в традиционных ударных трубах. Последние широко применяются для получения и исследования УВ и физических явлений в газах при высоких температурах. При бесконечном отношении давлений рабочего и исследуемого газа $P_3/P_1 \rightarrow \infty$ элементарная теория ударной трубы [1] определяет максимально возможное значение числа Маха УВ в исследуемом газе $M_{1m} = (\gamma_1 + 1)a_3/[(\gamma_3 - 1)a_1]$ ($a_3, \gamma_3, a_1, \gamma_1$ — скорость звука и показатель адиабаты в рабочем (толкающем) и исследуемом газе). Если рабочий газ — водород, а исследуемый газ в камере низкого давления — аргон, значение $M_{1m} = 15$, если гелий, число $M_{1m} \approx 9$. При $P_3/P_1 = 10^3$ число Маха ударной волны в аргоне еще меньше — $M_1 \approx 7$. Для увеличения отношения a_3/a_1

37

Рис. 1. Схема эксперимента: *1* — газ (аргон, гелий), *2* — рельсы-электроды, *3* — плазменный поршень, *4* — фронт ударной волны, *5* — вспомогательный электрод для инициирования разряда, *6* — лазер, *7* — поперечный разрез канала ускорителя, *8* — диафрагмы, *9* — фоточувствительный датчик. *u*_{br} — полное напряжение на входе в рельсотрон, *u*_{muz} — напряжение на дульном срезе.

и M_1 производится ввод энергии в рабочий газ (нагрев электрическим разрядом или тепловыделением при горении взрывчатой смеси) или охлаждение исследуемого газа (криогенные ударные трубы) [1]. Для получения наиболее сильных ударных волн применяются взрывные ударные трубы [2,3]. В этих случаях сложность проведения эксперимента и требуемые ресурсы значительно возрастают. Цель данной работы, продолжающей работы [4,5], — экспериментальное исследование процессов при генерации УВ и течений ударно-сжатых газов в рельсовых каналах, где, в отличие от традиционных ударных труб, в зоне течения ударно-сжатого газа присутствует сильное электрическое поле ~ 200–300 V/ст.

Схема эксперимента представлена на рис. 1. Рельсовый ускоритель с медными электродами длиной 250 mm, сечением канала 6.5×5.5 mm и погонной индуктивностью $L' = 0.36 \,\mu$ H/m размещался в специальной камере со смотровыми окнами. Камера откачивалась до форвакуума

и заполнялась до рабочих давлений $p_1 = 25 - 500$ Torr исследуемым газом (гелий или аргон). Показатель адиабаты этих газов при умеренных температурах равен 5/3, однако значительное различие их молярных масс $\mu(Ar)/\mu(He) \approx 10$ и потенциалов ионизации приводит к существенным различиям параметров газа в ударно-сжатом слое при одинаковых скоростях УВ. Накопитель энергии в виде LC-линии подключался к рельсотрону через игнитронный разрядник и формировал на нагрузке трапецеидальный импульс тока с почти плоской вершиной. Амплитуда разрядного тока I, который измерялся поясом Роговского, варьировалась изменением зарядного напряжения U0 на батарее конденсаторов. Разрядный ток практически не зависел от сорта газа, его начального давления и скорости движения ПП по каналу, так как определялся в основном внутренним сопротивлением источника питания. На выходе из канала измерялась разность потенциалов и_{тиг} между рельсами, которая является частью полной разности потенциалов на входе в рельсотрон $u_{br} = u_{muz} + IL'v_{pp}$, включающей индуктивное падение напряжения (v_{pp} — скорость плазменного поршня). Скорость ударной волны определялась по отсечке лазерного излучения в двух сечениях канала — в первом сечении, находящемся на расстоянии 45 mm от дульного среза, и сразу после него. В первом сечении также регистрировалась зависимость интенсивности свечения от времени, при этом во всех опытах чувствительности оптических трактов были примерно одинаковы.

Максимальные значения скорости УВ *D* получены в каналах, заполненных аргоном (D = 10.3 km/s, $M \approx 32.3$) и гелием (D = 16.4 km/s, $M \approx 16.3$) при начальном давлении $p_1 = 25$ Torr. Параметры плазмы ударно-сжатого слоя (см. таблицу), рассчитанные по методикам, аналогичным предложенным в работах [6,7], изменяются в диапазоне значений от нейтрального газа (гелий, D = 7.3 km/s, $x_e = n_e/n \sim 10^{-12}$, n — числовая плотность частиц в единице объема) до величин, характерных для почти полностью ионизованного газа (аргон, D = 10.3 km/s, $x_e = 0.45$). Электропроводность газа рассчитывалась по модели, учитывающей эффекты неидеальности плазмы [8]. Термодинамические параметры плазмы хорошо совпадают с данными таблиц [7].

Результаты эксперимента представлены на рис. 2, где для различных скоростей УВ (различных начальных давлений и напряжений на батарее $U_0 = 1.2-3.2 \text{ kV}$) показаны распределения интенсивности свечения *B* вдоль канала. По оси абсцисс отложено расстояние

Рис. 2. Распределение интенсивности свечения *B* (произвольные единицы) в канале, заполненном гелием (a, b) и аргоном (c, d), как функция расстояния δ (mm) от фронта УВ. $a - p_1 = 500$ Torr; *D*, km/s, U_0 , kV: I - 5.1, 1.2; 2 - 7.3, 2.2; 3 - 8.9, 3.2; $b - p_1 = 250$ Torr; *D*, km/s, U_0 , kV: I - 6.2, 1.2; 2 - 8.9, 2.2; 3 - 10.6, 3.2; $c - p_1 = 100$ Torr; *D*, km/s, U_0 , kV: I - 2.8, 1; 2 - 4, 1.2; 3 - 6.1, 2.2; 4 - 7.1, 3.2; $d - p_1 = 50$ Torr; *D*, km/s, U_0 , kV: I - 5.1, 1.2; 2 - 7, 2.2; 3 - 8.3, 3.2.

41

 $\delta = x_{sw} - x = (t_{sw} - t)D_{exp}$ произвольного сечения канала x от положения фронта УВ x_{sw} в момент t_{sw} . Здесь D_{exp} — скорость УВ, измеренная в момент t_{sw} . Такое преобразование координаты является линейным для области канала, где УВ движется с почти постоянной скоростью $D_{exp} \approx D(t_{sw})$, что выполнялось во всех экспериментах после выхода тока на постоянное значение [4,5].

Газ	U ₀ , kV	<i>p</i> ₁ , Torr	D, km/s	M_{sw}	T_2 , $10^3 \mathrm{K}$	p_2 , atm	$ ho_2/ ho_1$	${ m n}_e, { m cm}^{-3}$	σ ₂ , Mo/cm
He	2.2	500	7.3	7.25	5.06	43	3.8	$2.6\cdot 10^8$	$3.5\cdot10^{-8}$
He	3.2	250	10.6	10.5	10.4	45	3.9	$6.2\cdot10^{14}$	0.1
He	3.2	25	16.4	16.3	19.2	11.8	5.2	$2\cdot 10^{17}$	50
Ar	1.2	100	4	12.5	12.3	27.5	4.8	$5 \cdot 10^{17}$	35.7
Ar	2.2	50	7	21.9	17.4	47	9.1	$4.9 \cdot 10^{18}$	91.5
Ar	3.2	25	10.3	32.3	22.5	52	11.4	$7.7 \cdot 10^{18}$	134

Параметры плазмы ударно-сжатого слоя

Примечание. T_2 , p_2 , ρ_2 — температура, давление и плотность газа за УВ, n_e , σ_2 — числовая плотность электронов и удельная электропроводность газа в ударно-сжатом слое.

Для всех режимов, показанных на рисунках, наблюдается рост интенсивности свечения ПП с ростом разрядного тока (начального напряжения на батарее), что является следствием возрастания температуры плазмы в ПП. Различия формы распределений интенсивности свечения в каналах, заполненных аргоном и гелием, начинаются с того, что при одинаковых значениях скорости УВ в аргоне и гелии величина максимума свечения ПП в канале, заполненном гелием, всегда заметно меньше, чем при заполнении канала аргоном (рис. 2, a и 2, c). При равенстве скоростей УВ, что выполняется при одинаковых амперовых силах, действующих на $\Pi\Pi - I(He) = I(Ar)$, и одинаковых начальных плотностях газа в канале — $p_1(\text{He}) = 10p_1(\text{Ar})$, температура газа за УВ в аргоне значительно выше, чем за УВ в гелии. При этом из-за существенного различия потенциала ионизации газов разница в концентрациях заряженных частиц и электропроводности плазмы аргона и гелия составляет несколько порядков (см. таблицу). Это дает основание предполагать, что в объеме ПП присутствуют компоненты плазмы газа, заполняющего канал, что и является причиной бо́льшего значения максимума интенсивности свечения ПП в аргоне по сравнению с гелием при одинаковой скорости УВ в канале.

Наиболее интересный результат эксперимента — это влияние сорта газа и скорости УВ на форму пространственного распределения свечения в ударном слое. В каналах, заполненных гелием (рис. 2, *a*, *b*), при всех исследованных параметрах ($p_1 = 25-500$ Torr, $U_0 = 1-3.2$ kV,

 $D = 4 - 16.4 \, \text{km/s})$ интенсивность свечения ударного слоя пренебрежимо мала. В каналах, заполненных аргоном (рис. 2, с, кривые 1 и 2), при скоростях УВ, меньших критической скорости, зависящей от давления, и для $p_1 = 100$ Torr примерно равной 4 km/s, в окрестности УВ также имеется достаточно протяженный слой газа, в котором свечение отсутствует. При превышении этой скорости картина принципиально изменяется. Во всем объеме ударно-сжатого слоя, начиная от ближайшей окрестности УВ, возникает свечение (кривые 3,4 рис. 2, a, рис. 2, d), интенсивность которого растет в направлении к ПП и сравнима с излучением ПП. Рост интенсивности свечения за УВ в аргоне можно объяснить перетеканием части разрядного тока из области ПП в область ударно-сжатого слоя. Единственным механизмом, способным обеспечить прохождение тока через границу холодный электрод-плазма, является взрывная эмиссия электродов, вызванная сильными приэлектродными полями [9,10]. При малых скоростях УВ ионизация газа за УВ пренебрежимо мала. Ток в ударно-сжатом слое отсутствует, поскольку разности потенциалов $\sim 100\,\mathrm{V}$ недостаточно для пробоя всего межэлектродного промежутка. Сильная УВ разогревает и ионизует газ, создавая высокую начальную плотность заряженных частиц в объеме ударно-сжатого слоя. В отсутствие электрического тока в ударно-сжатом слое вблизи электродов образуются слои объемного заряда толщиной порядка дебаевского радиуса r_d. Значительная часть разности потенциалов *u*_{br} сосредоточена на этих слоях. При концентрациях носителей заряда за УВ $\sim 10^{17} - 10^{18} \, \mathrm{cm^{-3}}$ и более (аргон, $D \ge 4-5 \,\mathrm{km/s}$) в дебаевском слое возникает область сильных электрических полей $E \simeq u_{br}/r_d \sim 10^6 - 10^7$ V/cm. Такое поле способно инициировать взрывную эмиссию с электродов с последующим протеканием тока в проводящем ударно-сжатом слое. Высокие значения концентрации и удельной электропроводности в аргоне $n_e \sim 10^{17} - 10^{18} \, {
m cm^{-3}}, \ \sigma_2 \sim 30 - 100 \, {
m Mo/cm}$ достигаются при скоростях УВ, превышающих 5 km/s (см. таблицу). В гелии ($p_1 = 500$ Torr) из-за высоких значений скорости звука и потенциала ионизации 24.6 eV такие значения концентраций и электропроводности достигаются при скоростях около 20 km/s.

Влияет ли прохождение тока на параметры плазмы за УВ? Оценим отношение энергии, выделяющейся в единице массы ударно-сжатого слоя $E_{Dj} = j^2 t / (\sigma_2 \rho_2)$ при прохождении тока I_{sl} с поверхностной плотностью j, к величине кинетической энергии единицы массы

газа $J = 2E_{Dj}/D^2$. При D = 6 km/s и токах $I_{sl} = 1-10$ kA величина $J \sim 10^{-3}-0.1 \ll 1$. В этой области параметров влиянием тока на параметры газа за УВ можно пренебречь.

Разгон плазмы в рельсовом ускорителе показал, что рельсотрон является простым лабораторным устройством, уступающим по величине удельной внутренней энергии плазмы за УВ $\varepsilon \sim 0.1$ МЈ/g только взрывным ударным трубам. При значительной ионизации газа за УВ происходит перетекание части разрядного тока из ПП в слой ударносжатого газа, что сопровождается увеличением его свечения, снижением ускоряющей силы и эффективности разгона ПП на этой стадии.

Список литературы

- [1] Великович А.Л., Либерман М.А Физика ударных волн в газах и плазме. М.: Наука, 1987. 295 с.
- [2] Цикулин М.А., Попов Е.Г. Излучательные свойства ударных волн в газах. М.: Наука, 1977. 173 с.
- [3] Энциклопедия низкотемпературной плазмы / Под ред. В.Е. Фортова. Вводный том: Кн. 2. М.: Наука, 2000.
- [4] Жуков Б.Г., Резников Б.И., Куракин Р.О., Розов С.И. // ЖТФ. 2007. Т. 77.
 В. 7. С. 43–49.
- [5] Бобашев С.В., Жуков Б.Г., Куракин Р.О., Поняев С.А., Резников Б.И., Розов С.И. // Письма в ЖТФ. 2010. Т. 36. В. 2. С. 54–61.
- [6] Грязнов В.К., Иосилевский И.Л., Фортов В.Е. // ПМТФ. 1973. В. 3. С. 70–76.
- [7] Козлов Г.И., Ступицкий Е.А. Таблицы термодинамических параметров аргона и ксенона за падающей и отраженной УВ. М., 1969. АН СССР, Институт проблем механики.
- [8] Воробьев В.С., Хомкин А.Л. // ТВТ. 1977. Т. 15. В. 1. С. 188–191.
- [9] Месяц Г.А. Эктоны в вакуумном разряде: пробой, искра, дуга. М.: Наука, 2000. 424 с.
- [10] Райзер Ю.П. Физика газового разряда. Долгопрудный, 2007. 736 с.