## 02.2 Ионизация серы в газовой фазе электронным ударом

## © А.Н. Завилопуло, О.Б. Шпеник, П.П. Маркуш, М.И. Микита

Институт электронной физики НАН Украины, Ужгород, Украина E-mail: gzavil@gmail.com

## Поступило в Редакцию 20 июня 2013 г.

Описаны методика и результаты исследования выхода положительных ионов, образованных в результате диссоциативной ионизации электронным ударом серы. Из кривых эффективности ионизации получены энергия ионизации основной молекулы и энергии появления фрагментных ионов. Исследована динамика образования молекулярных ионов серы в интервале температур 300–670 К. Проанализированы энергетические зависимости эффективности образования ионов  $S_n$  для n = 1-6 и определены энергии появления. Получено полное сечение ионизации серы моноэнергетичным электронным пучком.

Сера является уникальным элементом, который изменяет свои свойства в зависимости от внешних условий: в обычных условиях это восьмиатомные кольцевые молекулы, у которых с повышением температуры кольца начинают разрываться, переходя в открытые цепи, т.е. строение молекул серы зависит от температуры, что и обусловливает существование аллотропических модификаций. Благодаря своим многогранным свойствам сера широко применяется в самых различных областях: входит в состав некоторых аминокислот (цистеин, метионин), витаминов (биотин, тиамин) и ферментов [1], а окислительно-восстановительные реакции серы являются источником энергии в хемосинтезе. Важно подчеркнуть, что сера содержится в составе атмосферы некоторых космических объектов и является очень распространенным элементом во вселенной и в межзвездной среде [2]. Это обусловливает постоянный интерес к исследованию различных физических и химических свойств серы.

Природная сера состоит из четырех стабильных изотопов [1]:  ${}^{32}S(95.084\%)$ ,  ${}^{33}S(0.74\%)$ ,  ${}^{34}S(4.16\%)$  и  ${}^{36}S(0.016\%)$ , которые хорошо разделяются масс-спектрометром. В основном состоянии атомы серы имеют электронную конфигурацию, подобную [Ne] $3s^23p^4$ , где 2 *p*-элек-

29

трона остаются неспаренными, однако молекулярные орбитали в соединениях серы не полностью повторяют электронные оболочки инертных газов, а всего лишь подобны им. Молекулы серы с количеством атомов больше трех можно отнести к кластерным соединениям, а поскольку во многих аспектах состояние материи кластеров пока недостаточно изучено, и они представляют собой нечто среднее между атомами и молекулами, с одной стороны, и твердым телом, с другой, то, безусловно, для понимания природы этих процессов необходима постановка различных экспериментов. Важную информацию о свойствах нейтральных кластеров можно получить методом масс-спектрометрии электронным ударом. Фрагментация, связанная с ионизационными процессами, может иметь доминирующее влияние, тогда распределение по массам нейтральных и ионизированных кластеров может существенно отличаться. Таким образом, детальные исследования процессов фрагментации вследствие электрон-кластерных взаимодействий имеют особую ценность. Целью данной работы было исследование масс-спектров паров серы при различных температурах и измерение энергетических зависимостей образования ионов серы.

В эксперименте в качестве аналитического прибора использовался монопольный масс-спектрометр МХ 7304А с разрешением по массе не хуже  $\Delta M = 1$  Da [3]. Пучок исследуемых молекул серы формировался с помощью многоканального эффузионного источника, что обеспечивало концентрацию молекул  $10^{10}-10^{11}$  cm<sup>-3</sup> в области взаимодействия с электронным пучком. Источник ионов работал в режиме стабилизации электронного тока и позволял получать пучки электронов при токе  $5.0 \,\mu$ A и разбросом по энергиям  $\Delta E = 200$  meV. Давление паров остаточных газов в рабочих условиях было не хуже  $2 \cdot 10^{-6}$  Torr. Калибровка шкалы масс проводилась по изотопам атомов Ar и Xe, а шкалы энергий — по начальному участку сечения ионизации атома Kr и молекулы N<sub>2</sub>. Эксперимент осуществлялся в 2 этапа: на первом этапе исследовались масс-спектры при разных температурах, а на втором — измерялись энергетические зависимости относительных сечений диссоциативной ионизации в диапазоне энергий ионизирующих электронов от 5–30 eV.

На рис. 1 показан масс-спектр паров серы, полученный при температуре источника молекул T = 450 К и энергии ионизирующих электронов  $U_e = 70$  eV. Как видно, в масс-спектре при этой температуре максимальными по интенсивности являются пики ионов S<sub>2</sub><sup>+</sup>, S<sup>+</sup> и S<sub>8</sub><sup>+</sup>, причем интенсивность пика атомарного иона составляет 43.7%,



**Рис. 1.** Масс-спектр серы при  $U_e = 70 \text{ eV}$  и T = 470 K; вставка: температурные зависимости образования ионов  $S_n$  (n = 1-6).

а молекулярного  $S_8^+ - 32.3\%$ , тогда как величины пиков остальных ионов  $(S_3^+, S_4^+, S_5^+, S_6^+, S_7^+)$  не превышают 25% от пика молекулярного иона  $S_2^+$  (см. таблицу). Основной вклад в интенсивность пиков  $S^+$  и  $S_2^+$ вносится за счет процессов фрагментации основной молекулы серы  $S_8$ , а также благодаря процессам термического разложения (деструкции). Следует заметить, что относительные интенсивности ионных пиков в масс-спектре серы сильно зависят от температуры испарения. В таблице приведено сравнение относительных интенсивностей ионных пиков, полученных нами с данными базы NIST [4]. Как видим, хорошее совпадение наблюдается только для молекулярного иона  $S_2^+$ , а для остальных имеются расхождения. Причина таких расхождений лежит в различном температурном режиме и в способе образования молекул среды. Поскольку зависимость давления насыщенных паров серы от температуры обратно пропорциональна числу атомов (*n*) в молекуле [5],

| Ион,                                | Относительная    |      | Отношение       | Потенциалы появления, eV |              |
|-------------------------------------|------------------|------|-----------------|--------------------------|--------------|
| (масса                              | интенсивность, % |      | интенсивности   | наши                     | Rosinger     |
| иона,                               | наши             | NIST | основного пика  | ланные                   | [7]          |
| m/z)                                | данные           | [4]  | к изотопному, % |                          | L. 1         |
| S <sup>+</sup> ,(32)                | 43.7             | 41.1 | 4.7             | $10.3\pm0.2$             | $10.4\pm0.3$ |
|                                     |                  |      |                 | $10.36\pm0.05^*$         |              |
| $S_2^{2+}$ , (32)                   | _                | _    | —               | $17.37\pm0.05^{\ast}$    | _            |
|                                     |                  |      |                 | 16.84[10]                |              |
| $S_2^{3+}$ , (21)                   | 1.1              | _    | _               | $29.40\pm0.05^{\ast}$    | -            |
|                                     |                  |      |                 | 29.28[10]                |              |
| S <sub>2</sub> <sup>+</sup> , (64)  | 100              | 100  | 9.1             | $9.5\pm0.2$              | $9.6\pm0.2$  |
| S <sub>3</sub> <sup>+</sup> , (96)  | 23.4             | 21.1 | 19.1            | $9.8\pm0.2$              | $10.2\pm0.2$ |
| S <sub>4</sub> <sup>+</sup> , (128) | 19.6             | 52.2 | 24.2            | $10.3\pm0.2$             | $10.1\pm0.2$ |
| $S_5^+$ , (160)                     | 11.7             | 53.1 | 31.7            | $8.7\pm02$               | $8.8\pm0.2$  |
| S <sub>6</sub> <sup>+</sup> , (192) | 129              | 41.0 | 32.1            | $9.5\pm0.2$              | $9.7\pm0.3$  |
| $S_7^+$ , (224)                     | 2.5              | 18.0 | —               | —                        | _            |
| $S_8^+$ , (256)                     | 32.3             | 70.0 | _               | _                        | _            |

Относительные интенсивности ионных пиков и потенциалы появления

\* Результаты получены методом газонаполненной ячейки.

то с ростом температуры растет число молекул S<sub>n</sub>, где n < 8, т.е. даже при T = 500 K давление насыщенных паров S<sub>2</sub> составляет 0.1% от S<sub>8</sub>. Поэтому появление в масс-спектре (рис. 1) атомарных (S<sup>+</sup>) и молекулярных (S<sup>+</sup><sub>3</sub>, S<sup>+</sup><sub>4</sub>, S<sup>+</sup><sub>5</sub>) ионов при температурах ниже 400 K связано с процессами фрагментации (диссоциации) под действием электронов.

На вставке рис. 1 показаны измеренные нами температурные зависимости образования ионов серы в диапазоне температур от 300 до 520 К при энергии ионизирующих электронов  $U_e = 70 \text{ eV}$ . На всех кривых наблюдается максимум в области 430 К, который, скорее всего, связан с термическим разрушением кристаллической решетки серы и разрывом колец S<sub>8</sub> с образованием открытых цепочек атомов. При дальнейшем нагревании интенсивность всех ионов увеличивается. Интересной является зависимость величины ионного пика S<sub>6</sub><sup>+</sup> от температуры, интенсивность которого больше интенсивности S<sub>3</sub><sup>+</sup> и S<sub>4</sub><sup>+</sup> от начала нагрева и до 450 К, а затем при 480 К интенсивность S<sub>3</sub><sup>+</sup> и S<sub>4</sub><sup>+</sup> становится больше S<sub>6</sub><sup>+</sup>. Это объясняется включением дополнительных источников



Рис. 2. Энергетические зависимости образования ионов  $S^+$ ,  $S_2^+$  и  $S_3^+$ .

формирования ионов  $S_3^+$  и  $S_4^+$  за счет термической деструкции молекул  $S_8$  и  $S_6.$ 

Заметим, что в масс-спектре кроме основных наблюдаются изотопные пики с различным отношением интенсивности изотопного к основному (см. таблицу). Так, величина изотопного пика  $^{34}{\rm S}^+$  составляет 4.7% от основного  $^{32}{\rm S}^+$ , а для других это соотношение увеличивается с ростом числа атомов серы в молекуле, и уже интенсивность изотопного пика  $^{66}{\rm S}^+_2$  равна 9.1% от  $^{64}{\rm S}^+_2$ .

Нами измерены относительные сечения образования ионов серы в интервале энергий налетающих электронов от порога процесса до 60 eV. На рис. 2 показаны пороговые участки энергетических зависимостей образования ионов S<sup>+</sup>, S<sub>2</sub><sup>+</sup> и S<sub>3</sub><sup>+</sup>. Наиболее вероятными каналами образования монокатиона серы S<sup>+</sup> являются диссоциативная ионизация молекул серы (реакция 1) и ионизация атома серы электронами (реакция 2):

$$S_n + e^- = S^+ + S_{n-1} + 2e^-,$$
 (1)

$$S + e^- = S^+ + 2e^-.$$
 (2)

Известно [5], что атомы серы возникают при температуре > 700 К ( $P_s = 1.08 \cdot 10^{-8}$  Torr) и при наших экспериментальных условиях (T = 300-670 K) отсутствуют, поэтому образование ионов S<sup>+</sup> идет по реакции (1), т.е. в основном за счет процессов диссоциативной ионизации молекул S<sub>8</sub> и S<sub>6</sub> при взаимодействии с электронами.

По пороговым участкам (рис. 2) методом наименьших квадратов [6] были определены энергии появления ионов  $S^+, S_2^+$  и  $S_3^+$  (см. таблицу). Ход кривой эффективности ионизации для иона S<sup>+</sup> отражает монотонный рост от порога и до  $17 \,\mathrm{eV}$ , особенность при  $E = 13.55 \,\mathrm{eV}$ свидетельствует о включении дополнительного канала диссоциации с образованием данного иона. Молекула S2 является наиболее стабильной среди молекул с малым числом атомов серы, что подтверждается максимальной интенсивностью иона S<sub>2</sub><sup>+</sup> в масс-спектре. Энергетическая зависимость образования этого иона показывает, что источниками его формирования могут быть как процессы непосредственной ионизации молекул S<sub>2</sub>, возникающих в процессе термической фрагментации, так и в результате диссоциативной ионизации молекул S<sub>6</sub> и S<sub>8</sub> под действием электронного удара. Подтверждением сказанного является появление на кривой (рис. 2) особенности при  $E = 12.94 \,\mathrm{eV}$ , которая соответствует энергии появления иона S<sub>2</sub><sup>+</sup> за счет диссоциативной ионизации молекулы S<sub>6</sub>:

$$S_6 + e^- = S_2^+ + S_4 + 2e^-.$$
 (3)

Изменение наклона этой кривой при энергии 17 eV, вероятно, связано с образованием возбужденных состояний иона  $S_2^+$  [7,8]. Что касается каналов образования ионов  $S_3^+$ , то они появляются в результате диссоциативной ионизации молекул  $S_6$  и  $S_8$ , а также за счет прямой ионизации молекулы  $S_3$ , образованной в результате термической диссоциации. Максимум на кривой при E = 11.69 eV указывает на образование иона  $S_3^+$  за счет диссоциативной ионизации молекулы  $S_8$ :

$$S_8 + e^- = S_3^+ + S_5 + 2e^-,$$
 (4)

а небольшой максимум при E = 14.38 eV появляется вследствие фрагментации молекулы S<sub>6</sub>. С целью детального исследования образования положительных ионов серы в газовой фазе проведены прецизионные эксперименты с использованием гипоциклоидального электронного спектрометра с газонаполненной ячейкой [9], температура паров в которой 353 K, ток электронов составлял 40 nA при разбросе по энергии



**Рис. 3.** Энергетическая зависимость полного сечения образования положительных ионов серы; вставка: участок кривой для области энергий 30–36 eV.

 $\Delta E = 0.15$  eV. Полный сбор ионов обеспечивался подачей на детектор ионов потенциала 1.5 V относительно катода. В этих условиях измерено полное сечение образования положительных ионов серы в диапазоне энергий 8–36 eV с шагом по энергии 0.05 eV. На кривой рис. 3 наблюдается целый ряд особенностей (отмечено стрелками) при энергиях: 11.91, 12.48, 13.23, 17.37, 22.84, 24.20, 29.40 eV, связанных с уникальностью состава паров серы — присутствием в них молекулярной и атомарной компонент. Что касается наблюдаемых в области пороговых энергий максимумов при E = 10.36 и 9.45 eV, то они соответствуют потенциал ионизации атома S на 0.9 eV выше потенциала двухатомной молекулы серы, интенсивность которой в масс-спектре (рис. 1) максимальна. С помощью специальной процедуры аппроксимации линейных участков измеренной кривой (рис. 3) определены точки пересечения, которые

соответствуют энергии появления дополнительно включаемых каналов ионизации. Таким способом выделены особенности, появление которых связано как с прямым процессом ионизации и фрагментации, так и с процессом возбуждения энергетических состояний ионов. Особенности при энергиях налетающих электронов 11.91, 12.48 и 13.23 eV совпадают с энергиями возбуждения энергетических состояний  ${}^{4}\Pi_{u}$ ,  ${}^{2}\Pi_{u}$ ,  ${}^{4}\Sigma_{p}^{-}$ ионов S<sub>2</sub><sup>+</sup> [7], которые проявляются и на кривой диссоциативной ионизации для иона S<sub>2</sub><sup>+</sup> (рис. 2). Заметим, что незначительное увеличение интенсивности ионного сигнала при энергии 17.37 eV соответствует началу процесса появления двухзарядных ионов S<sub>2</sub><sup>2+</sup> (теоретический расчет [10] дает 16.84 eV). Наиболее вероятной причиной изменения наклона кривой при энергиях 22.84 и 24.20 eV являются процессы диссоциативного распада [8] в соответствии с реакцией (1), что приводит к изменению интенсивности полезного сигнала. Особенность при энергии 29.40 eV связана с образованием трехзарядного иона  $S_2^{3+}$ , что хорошо согласуется с данными работы [10]. Очень интересным представляется участок энергетической зависимости выше 30 eV (вставка на рис. 3), где проявляется ряд структурных особенностей, которые связаны с образованием возбужденных автоионизационных состояний ионов S<sup>+</sup>, а часть из них принадлежит возбужденным состояниям иона S<sub>2</sub><sup>+</sup>.

## Список литературы

- [1] *Greenwood N, Earnshaw A. //* Chemistry of the Elements. 2nd ed. Butterworth-Heinemann. Oxford. 1997. P. 645–662.
- [2] Feaga L.M., McGrath M.A., Feldman P.D. // Astrophys. 2002. J. 570. P. 439.
- [3] Завилопуло А.Н., Микита М.И., Шпеник О.Б. // ЖТФ. 2012. Т. 82. С. 30-37.
- [4] NST Standard Reference Database. (http://www.webbook.nist.gov).
- [5] Сравочник химика / Под ред. Б.П. Никольского. М.; Л.: Химия, 1982. Т. 1. С. 729.
- [6] Завилопуло А.Н., Чипев Ф.Ф., Шпеник О.Б. // ЖТФ. 2005. Т. 75. С. 19-24.
- [7] Rosinger W., Grade M., Hirschwald W. // Inter. J. of Mass Spectr. and Ion. Phys. 1983. V. 47. P. 239–242.
- [8] Brottona S.J., McConkey J.W. // J. Chem. Phys. 2011. V. 134. P. 204 301(1-9).
- [9] Романюк Н.И., Папп Ф.Ф., Чернышова И.В., Шпеник О.Б., Манди И.А. // Физика электронных и атомных столкновений (Тем. сб. № 12). СПб., 1991. С. 174.
- [10] Miroslav Urban, Geerd H.F. Diercksen, Michael Jurek // Molecular Physics. 1988. V. 94. N 1. P. 199–208.