04 Об эффективности излучения столба плазмы в условиях импульсно-периодического разряда высокого давления в цезии

© Ф.Г. Бакшт, В.Ф. Лапшин

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург Петербургский государственный университет путей сообщения, Санкт-Петербург E-mail: baksht@mail.ioffe.ru, lapshinvf@mail.ru

Поступило в Редакцию 29 апреля 2013 г.

Методом прямого интегрирования уравнения переноса излучения рассчитаны спектральные потоки энергии, выходящие с поверхности столба аксиальносимметричной неоднородной цезиевой плазмы высокого давления. Показано, что при заданном значении температуры плазмы на оси, независимо от механизма образования излучения и радиального распределения параметров плазмы, максимальные потоки энергии излучения возникают при условии, что радиальная оптическая толщина столба плазмы τ_R близка к единице. Найдено асимптотическое значение величины τ_R , при которой излучения.

Газоразрядная плазма широко используется в качестве источника ультрафиолетового, видимого и инфракрасного излучения. Важной задачей при разработке таких источников является проблема повышения их энергоэффективности. Решение этой задачи фактически сводится к оптимизации параметров плазмы с целью получения максимально возможных потоков излучаемой энергии при заданной мощности устройства. В данной работе рассмотрение вопроса об эффективности излучения столба плазмы проводится на примере плазмы импульснопериодического разряда (ИПР) высокого давления в цезии, что связано с возможностью его использования для создания энергоэффективного источника света [1,2]. Отметим, что расчету излучения газоразрядных источников высокого давления и оптимизации их работы посвящено большое число работ (см., например, [1,3,4] и ссылки в них), однако

9

вопрос об общей взаимосвязи спектрального потока энергии и оптической плотности ограниченной лабораторной плазмы ранее отдельно не рассматривался.

В плазме дуги высокого давления, благодаря большой скорости столкновительных процессов, электронная компонента находится в состоянии локального термодинамического равновесия (ЛТР). Это означает, что имеют место распределение Максвелла и соотношения Саха-Больцмана, выполняющиеся при температуре электронов T_e . Отметим, что температуры электронов T_e и тяжелых частиц T_h могут, вообще говоря, отличаться друг от друга. При этом радиационные характеристики плазмы зависят главным образом от температуры электронов. Для плазмы, находящейся в условиях ЛТР, уравнение переноса излучения вдоль заданного направления Ω при отсутствии рассеяния света имеет вид

$$\frac{\partial}{\partial s}I_{\lambda} = k_{\lambda}'(I_{\lambda P} - I_{\lambda}). \tag{1}$$

Здесь $I_{\lambda} = I_{\lambda}(r, \Omega)$ — спектральная интенсивность излучения с длиной волны λ ; r — радиальная координата; $I_{\lambda P} = 2hc^2\lambda^{-5} \times [\exp(hc/\lambda k_{\rm B}T_e) - 1]^{-1}$ — равновесная (планковская) спектральная интенсивность; $T_e = T_e(r)$ — температура электронов; s — координата вдоль светового луча; $k'_{\lambda}(r)$ — коэффициент поглощения плазмы с учетом свободно-свободных (ff), связанно-свободных (bf) и связанно-связанных (bb) переходов электронов и с учетом поправки на вынужденное излучение:

$$k_{\lambda}' = \left(k_{\lambda}^{(ff)} + k_{\lambda}^{(bf)} + k_{\lambda}^{(bb)}\right) \left[1 - \exp(-hc/\lambda k_{\rm B}T_e)\right].$$

В правой части (1) интенсивность излучения заменена своим равновесным значением $I_{\lambda P}(T_e)$ в соответствии с принципом детального равновесия. Подробное описание расчета k'_{λ} в цезиевой плазме приведено в [1]. Решение (1) может быть записано в интегральной форме

$$I_{\lambda}(r,\psi,\theta) = \int_{0}^{l_{W}} k'_{\lambda} I_{\lambda P} \exp\left(-\int_{0}^{l} k'_{\lambda}(l') \frac{dl'}{\cos\psi}\right) \frac{dl}{\cos\psi}.$$
 (2)

Здесь углы ψ и θ задают направление луча Ω (рис. 1), $l_W = AC = AB \cos \psi$, $l_W = l_W(\theta) = 2R \cos \theta$, R — радиус плазменного столба.

Рис. 1. Геометрия задачи: Ω — единичный вектор в направлении распространения излучения; \mathbf{e}_r — единичный вектор в радиальном направлении.

Используя (2), радиальную спектральную плотность потока энергии излучения F_{λ} , выходящего с поверхности столба плазмы, можно записать в виде

$$F_{\lambda} = \int_{(2\pi)} (\Omega \mathbf{e}_r) I_{\lambda} d\Omega$$
$$= 4 \int_{0}^{\pi/2} d\theta \cos \theta \int_{0}^{\pi/2} d\psi \cos \psi \cos \psi \int_{0}^{l_W} k'_{\lambda} \exp\left(-\int_{0}^{l} k'_{\lambda} \frac{dl'}{\cos \psi}\right) dl, \quad (3)$$

где \mathbf{e}_r — вектор единичной длины, задающей направление нормали к поверхности. Для сокращения объема вычислений введем новую

переменную τ и специальные функции $G_n(\tau)$, определяемые соотношениями

$$\tau = \int_{0}^{l} k'_{\lambda}(l') dl' \quad \text{if } \quad G_{n}(\tau) = \int_{0}^{\pi/2} d\psi \cos^{n} \psi \exp\left(-\frac{\tau}{\cos\psi}\right), \quad n \ge 0.$$

Теперь (3) принимает вид

$$F_{\lambda} = 4 \int_{0}^{\pi/2} d\theta \cos \theta \int_{0}^{\tau_{W}} G_{1} I_{\lambda P} d\tau = \varphi_{\lambda} F_{\lambda P}(T_{0}).$$
(4)

Здесь $F_{\lambda P}(T_0) = \pi I_{\lambda P}(T_0)$ — спектральный поток энергии с поверхности черного тела с температурой $T_0 = T_e(0)$, равной температуре электронов на оси столба, $\tau_W = \tau(l_W)$ — оптическая плотность плазмы вдоль отрезка длиной l_W в сечении столба дуги, перпендикулярном оси разряда. Кроме того, в (4) введены вспомогательные функции

$$\varphi_{\lambda} = \frac{4}{\pi} \int_{0}^{\pi/2} d\theta \cos\theta \int_{0}^{\tau_{W}/2} \left[G_{1}(\tau) + G_{1}(\tau_{W} - \tau)\right] f(\tau) d\tau, \qquad (5)$$

где $f(\tau) = (\exp(A_0) - 1)/(\exp(A(\tau)) - 1)$, $A_0 = hc/(\lambda k_B T_0)$, $A(\tau) = hc/(\lambda k_B T_e(\tau))$. Спектральная функция φ_{λ} показывает, какую долю составляет излучение столба плазмы от излучения черного тела с температурой T_0 .

Зависимость F_{λ} от абсолютного значения температуры плазмы и, прежде всего, от значения температуры на оси разряда T_0 , как видно из (4), сосредоточена в множителе $F_{\lambda P}(T_0)$. Спектральная функция φ_{λ} определяет зависимость потока F_{λ} от распределения параметров плазмы по радиусу столба и от его радиальной оптической толщины

$$\tau_R = \int\limits_0^R k_\lambda'(r) dr.$$

Оценим значение τ_R , при котором спектральная функция φ_{λ} максимальна. Это значение определяется из условия

$$\frac{\partial \varphi_{\lambda}}{\partial \tau_{R}} = \frac{4}{\pi} \int_{0}^{\pi/2} \cos \theta \frac{\partial \tau_{W}}{\partial \tau_{R}} \bigg[f(\tau_{W}/2) G_{1}(\tau_{W}/2) - \int_{0}^{\tau_{W}/2} G_{0}(\tau_{W}-\tau) f(\tau) d\tau \bigg] d\theta = 0.$$
(6)

В неоднородной по радиусу плазме газового разряда температура электронов T_0 на оси существенно выше, чем температура $T_W = T_e(R)$ вблизи поверхности плазменного столба. Поскольку $f(\tau_W/2) \sim 1$, а $f(0) \sim \exp[-(A_W - A_0)] \ll 1$ (здесь $A_W = hc/(\lambda k_B T_W))$, то при интегрировании в (6) основной вклад вносит приосевая область, где $\theta \sim 0$ и $\tau \sim \tau_W/2 \sim \tau_R$. В результате условие (6) приобретает вид

$$G_1(\tau_R) = \int_0^{\tau_R} G_0(2\tau_R - \tau) f(\tau) d\tau.$$
(7)

Наличие большого параметра $\xi = A_W - A_0$ в подынтегральной функции $f(\tau)$ позволяет получить асимптотическое приближение для интеграла в (7) методом Лапласа [5]. После соответствующих вычислений уравнение (7) преобразуется к виду

$$G_1(\tau_R) = \frac{1}{2} \tau_R G_0(\tau_R) \gamma \left[1 + Q\left(\frac{1}{\xi}\right) \right].$$
(8)

Здесь

$$\gamma = \frac{k_{\lambda}'(0)R}{\tau_R} \sqrt{\frac{2\pi}{A_0} \left| \frac{T_0/R^2}{\partial^2 T/\partial r^2} \right|_{r=0}} \right|.$$

Отметим, что величина γ относительно слабо зависит от радиального распределения параметров плазмы и приближенно $\gamma \approx (2\pi/A_0)^{1/2}$. В этом случае решение (8) может быть найдено численно и аппроксимируется простым выражением $\tau_R \approx 1.7/\gamma$. Теперь получаем асимптотическое значение τ_R , при котором достигает максимума спектральная

функция φ_{λ} :

$$\tau_R \approx 1.7 \sqrt{\frac{1}{2\pi} \frac{hc/\lambda}{kT_0}}.$$
(9)

В работе выполнены расчеты спектрального потока энергии F_{λ} , выходящего из столба цезиевой плазмы радиусом R = 2.5 mm, для серии модельных профилей температуры

$$T_e(x) = T_{10} - (T_{10} - T_w)x^3 + T_{20}[1 - (1 - \exp(-\alpha x^2))/(1 - \exp(-\alpha)) + x^2(1 - x^{12})/10\alpha]$$

при значениях $T_{10} = 2700$ К, $T_{20} = 3300$ К и $T_W = 1500$ К и $T_W = 1500$ К (здесь x = r/R — безразмерная радиальная переменная). Выбранные профили температуры соответствуют различной степени заполнения газоразрядного столба (рис. 2, *a*) горячей плазмой. Подобные профили реализуются, например, в импульсно-периодическом разряде высокого давления в цезии [1,2] и в натрии [6], при пропускании импульса тока через слабоионизованную плазму дежурного разряда. Для изменения радиальной оптической толщины столба τ_R при заданном профиле температуры изменялось давление плазмы в диапазоне 0.01–10 bar. Значения спектральных функций $\varphi_{\lambda} = F_{\lambda}/F_{\lambda P}(T_0)$ находились методом прямого численного интегрирования соотношения (5). При вычислении k'_{λ} полагалось $T_e = T_h$ (см., например, [7]).

Результаты расчетов зависимости φ_{λ} от радиальной оптической толщины разряда τ_R для различных радиальных профилей температуры приведены на рис. 2, *b*, *c* и рис. 3. На рис. 2, *b* и *c* приведены результаты расчетов для двух значений длин волн: $\lambda_1 = 530$ nm и $\lambda_2 = 996$ nm соответственно. Излучение с длиной волны λ_1 формируется практически полностью, за счет фоторекомбинации в состояние 6Р атома цезия. Излучение на длине волны λ_2 , главным образом, формируется за счет перехода 4F–5D в атоме цезия. Как видно из рисунка, максимальное значение потока энергии излучения, генерируемого столбом плазмы, при любом радиальном распределении температуры $T_e(r)$ и при любом механизме излучения достигается при условии $\tau_R \approx 1$. При этом величина выходящего потока энергии сильно зависит от вида этого распределения: значения φ_{λ} быстро возрастают по мере увеличения степени заполнения газоразрядного столба горячей плазмой. Вертикальные

Рис. 2. *а* — модельные профили температуры плазмы при различных значениях параметра α ; *b* и *c* — зависимости спектральных функций φ_{λ} от радиальной оптической толщины τ_R столба плазмы для значений длин волн $\lambda = 530$ nm (*b*) и $\lambda = 996$ nm (*c*). Расчеты выполнены для профилей температуры со значениями параметра α : *I* — 0.1, *2* — 0.2, *3* — 1.0, *4* — 4.0, *5* — 8.0, *6* — 20, *7* — 72, $8 - \varphi_{\lambda}$ для однородного столба плазмы с температурой T_0 .

пунктирные линии на рис. 2, *a* и *b* указывают значения $\tau_{R1} = 1.44$ и $\tau_{R2} = 1.04$, рассчитанные по формуле (9) для длин волн λ_1 и λ_2 . Как видно, асимптотическая оценка τ_R хорошо соответствует расчетным положениям максимумов φ_{λ} .

На рис. 3 приведена зависимость φ_{λ} от τ_R при различных значениях температуры плазмы T_0 на оси столба. При изменении температуры T_0 (в указанном выше модельном профиле $T_0 = T_{10} + T_{20}$) использовалось значение $T_{10} = 2700$ K, а величина T_{20} изменялась в интервале от 800 до 6300 K. Расчеты выполнены для длины волны $\lambda_1 = 530$ пт и значения параметра $\alpha = 0.2$, при котором горячая плазма заполняет большую часть газоразрядного столба (рис. 2, *a*). Как видно из рис. 3, максимальные значения при всех температурах плазмы достигаются при $\tau_R \approx 1$. Отметим также, что сами значения φ_{λ} слабо зависят от температуры горячей плазмы T_0 .

Письма в ЖТФ, 2013, том 39, вып. 19

Рис. 3. Зависимость спектральных функций φ_{λ} от радиальной оптической толщины τ_R столба плазмы для значения длины волны $\lambda = 530$ nm при различных значениях температуры T_0 на оси: I - 3500 K, 2 - 4000 K, 3 - 5000 K, 4 - 6000 K, 5 - 7000 K, 6 - 8000 K, 7 - 9000 K.

Таким образом, в данной работе методом прямого интегрирования уравнения переноса излучения рассчитан спектральный поток энергии F_{λ} , выходящий с поверхности столба ЛТР плазмы высокого давления. Показано, что спектральный поток может быть представлен в виде $F_{\lambda} = \varphi_{\lambda}F_{\lambda P}(T_0)$. Причем зависимость F_{λ} от температуры плазмы T_0 на оси столба определяется планковским множителем $F_{\lambda P}(T_0)$, а значения φ_{λ} зависят от степени заполнения газоразрядного столба горячей плазмой и его радиальной оптической толщины τ_R . Расчеты, выполненные в условиях, характерных для ИПР высокого давления в цезии, показали, что величина φ_{λ} быстро возрастает по мере заполнения газоразрядного столба горячей плазмой. Максимальные значения φ_{λ} при этом всегда достигаются при $\tau_R \approx 1$. Для значений τ_R , соответствующих максимуму φ_{λ} , получена асимптотическая оценка. Результаты работы могут быть использованы при разработке источников излучения на основе газоразрядной плазмы высокого давления.

Список литературы

- [1] Baksht F.G., Lapshin V.F. // J. Phys. D: Appl. Phys. 2008. V. 41. P. 205 201.
- [2] Бакшт Ф.Г., Каплан В.Б., Лапшин В.Ф., Марциновский А.М. // Письма в ЖТФ. 2009. Т. 35. В. 23. С. 17.
- [3] Nordborg H., Iordanidis A.A. // J. Phys. D: Appl. Phys. 2008. V. 41. P. 135 205.
- [4] Randrianandraina H.Z., Cressault Y., Gleizes A. // J. Phys. D: Appl. Phys. 2011.
 V. 44. P. 194012.
- [5] Федорюк М.В. Асимптотика: Интегралы и ряды. М.: Наука, 1987.
- [6] Бакшт Ф.Г., Лапшин В.Ф. // ЖТФ. 1996. Т. 66. В. 11. С. 170.
- [7] Бакшт Ф.Г., Лапшин В.Ф. // Прикладная физика. 2008. № 6. С. 43.