06;07;13

Шероховатость пленок аморфного, поликристаллического кремния и поликристаллического кремния с полусферическими зернами

© А.В. Новак, В.Р. Новак

Национальный исследовательский университет МИЭТ, Москва, Зеленоград Научно-исследовательский институт физических проблем им. Ф.В. Лукина, Зеленоград E-mail: novak-andrei@mail.ru

Поступило в Редакцию 14 мая 2013 г.

Изучены шероховатость, пространственные и корреляционные свойства поверхности для трех характерных типов LPCVD пленок кремния: аморфных и поликристаллических, имеющих относительно "гладкую" поверхность, и поликристаллических пленок с полусферическими зернами (HSG-Si), имеющих значительную шероховатость поверхности, посредством атомно-силовой микроскопии. Из анализа корреляционной функции и функции спектральной плотности мощности найдено, что для описания морфологии пленок аморфного и поликристаллического кремния подходит модель самоаффинной поверхности, тогда как для HSG-Si пленок — модель "холмообразной" поверхности.

Пленки кремния, получаемые на основе метода химического парофазного осаждения при низком давлении (LPCVD), широко используются в микроэлектронике и различных микроэлектромеханических системах (MEMS) [1]. Значительную роль с точки зрения применения пленок играет шероховатость поверхности. Для многих применений необходимы пленки, имеющие небольшую шероховатость. В некоторых случаях необходимы пленки, имеющие значительную шероховатость, например в элементах динамической памяти (DRAM), в которых используются поликристаллические пленки с полусферическими зернами (HSG-Si) с большой площадью поверхности [2].

При LPCVD осаждении пленок кремния в зависимости от температуры и давления образуются несколько типов пленок с характерной,

32

четкоопределенной поверхностной морфологией и микроструктурой [3]: при низких температурах (менее ~ 550°С) и при высоких температурах (более ~ 590°С) образуются соответственно аморфные и поликристаллические пленки, которые имеют сравнительно гладкую поверхность; в переходной температурной области образуются пленки, состоящие из аморфной и поликристаллической фазы. Кроме того, в переходной области, в узком температурном интервале (~ 6°С) и специальных условиях, образуются HSG-Si пленки, имеющие значительную шероховатость [3–5].

Ранее морфология поверхности LPCVD пленок кремния изучалась методами электронной и атомно-силовой микроскопии (ACM), и были определены такие характеристики поверхности, как среднеквадратическая и арифметическая шероховатости, средний размер зерен [5–8]. В то же время для изучения шероховатости и корреляционных свойств поверхности пленок широко используется скейлинговый подход, основанный на анализе корреляционной функции [9–11]. Этот подход использовался при изучении пленок аморфного кремния, полученных термическим испарением [9], и LPCVD пленок поликристаллического кремния [12].

В данной работе на основе использования ACM изучаются шероховатость, пространственные и корреляционные свойства поверхности для трех характерных типов LPCVD пленок кремния: аморфных, "гладких" поликристаллических и HSG-Si пленок.

Получение LPCVD пленок кремния и измерение их характеристик (толщины и ACM-изображений) производили таким же образом, как описано нами ранее в [5]. Пленки аморфного кремния (*a*-Si) осаждали при температуре — 550°С, поликристаллического кремния (poly-Si) с "гладкой" поверхностью — 590°С. Пленки HSG-Si с большой площадью поверхности ($S_{dr} \sim 80\%$, S_{dr} — относительное приращение площади поверхности [13]) осаждали при температуре 584°С, что соответствует условиям, найденным ранее [5]. Математическая обработка ACM-изображений осуществлялась при помощи программного пакета Image Analysis P9 (NT-MDT). При анализе ACM-изображений, представляющих функции высоты поверхности $Z(x_i, y_j)$, отсчитанной от базовой плоскости XY, рассчитывали: гистограммы распределения высот поверхности, автокорреляционную функцию [10,14], корреляционную функцию высота-высота [9], функцию спектральной плотно-

сти мощности (PSD), а также параметры, определяемые стандартами ISO 25178-2:2012 [14] и ASME В 46.1-2009 [15].

На рис. 1 представлены фрагменты ACM-изображений пленок *a*-Si, HSG-Si и poly-Si, а также соответствующие этим пленкам гистограммы распределения высот поверхности, рассчитанные для ACM-изображений размерами $2 \times 2 \mu$ m. Все пленки имели одинаковую толщину $\sim 95 \pm 10$ nm. В таблице приведены основные статистические параметры, рассчитанные для ACM-изображений с одинаковой выборочной площадью ($2 \mu m^2$, 1024×1024 точек) и усредненные по 5 изображениям.

Найдено, что гистограммы распределения высот поверхности для пленок *a*-Si, poly-Si и HSG-Si существенно отличаются. Гистограмма для пленки *a*-Si имеет форму, наиболее близкую к гауссовой (рис. 1, *a*). В этом случае параметр S_{sk} , характеризующий асимметрию распределения, практически равен нулю (см. таблицу). Гистограмма для HSG-Si пленки (рис. 1, *b*) наиболее сильно отличается от гауссова распределения. Наблюдается длинный "левый хвост", т. е. имеет место значительная отрицательная асимметрия распределения (параметр $S_{sk} = -0.91$). Гистограмма для poly-Si с "гладкой" поверхностью (рис. 1, *c*) также отличается от гауссова, но в этом случае наблюдается положительная асимметрия (небольшой "правый хвост", параметр $S_{sk} = 0.375$).

Приведенные в таблице параметры S_q , S_a , S_z , S_p , S_v , называемые амплитудными [13] или высотными параметрами [15,16], служат для характеристики нерегулярности поверхности в вертикальном направлении. Традиционными параметрами, используемыми для характеристики шероховатости, являются: Sq — среднеквадратическая шероховатость и S_a — арифметическая шероховатость. Наибольшую шероховатость имеют HSG-Si пленки ($S_q = 18.6$ nm, $S_a = 15.1$ nm), наименьшую — пленки *a*-Si ($S_q = 1.15$ nm, $S_a = 0.91$ nm). Параметр $S_z ~(\equiv S_t)$ — максимальная высота рельефа поверхности, определяемая как разность высот между самой высокой и самой низкой точками поверхности на выборочной площади. Этот параметр соответствует толщине поверхностного слоя, заключенного между плоскостями, проходящими через самую низкую и самую высокую точки поверхности. Ниже этого слоя лежит сплошной материал. Таким образом, S_z можно рассматривать как параметр, характеризующий толщину поверхностного, возмущенного слоя, не полностью заполненного материалом, в котором происходит изменение рельефа. Для HSG-Si пленки $S_z = 123 \,\mathrm{nm}$, что превышает среднюю толщину пленки ≈ 95 nm. Для пленок *a*-Si и poly-Si параметр S_z

 ω_*

Рис. 1. АСМ-изображения и гистограммы распределения высоты поверхности пленок: *a* — аморфного кремния, *b* — HSG-Si и *c* — поликристаллического "гладкого" кремния.

Статистические параметры для пленок аморфного, поликристаллического "гладкого" кремния и HSG-Si

	Аморфный кремний 2.0 × 2.0 µm	$\begin{array}{c} \text{HSG-Si}\\ 2.0\times2.0\mu\text{m} \end{array}$	"Гладкий" поликремний 2.0 × 2.0 µm
Амплитудные параметры			
Среднеквадратическая шероховатость S_q , nm	1.15 ± 0.04	18.6 ± 1.2	3.06 ± 0.08
Арифметическая шероховатость S_a , nm	0.91 ± 0.03	15.1 ± 1.1	2.41 ± 0.07
Максимальная высота рельефа поверхности S _z , nm	11.0 ± 0.92	123.0 ± 4.1	28.4 ± 1.7
Высота самого высокого пика S _p , nm	5.48 ± 1.59	36.1 ± 3.3	14.8 ± 0.8
Глубина самой глубокой впадины S_v , nm	5.54 ± 0.86	86.9 ± 1.9	13.6 ± 2.1
Асимметрия S _{sk}	0.028 ± 0.087	-0.91 ± 0.11	0.375 ± 0.035
Эксцесс S _{ku}	3.25 ± 0.05	3.31 ± 0.31	3.42 ± 0.08
Пространственные параметры			
Автокорреляционная длина <i>S</i> _{al} , nm	17.8 ± 0.7	43.2 ± 2.1	23.7 ± 1.0
Аспектное отношение текстуры S _{tr}	0.92 ± 0.01	0.89 ± 0.03	0.92 ± 0.04
Скейлинговые, корреляционные параметры			
Коэффициент изрезанности α	0.91 ± 0.01	0.92 ± 0.01	0.92 ± 0.02
Латеральная корреляционная длина ξ, nm	21.2 ± 0.7	51.1 ± 2.0	27.9 ± 0.5
Ширина интерфейса w, nm	1.16 ± 0.01	18.6 ± 2.8	3.11 ± 0.02
Длина волны λ, nm	_	221 ± 10	-

Рис. 2. Корреляционные функции H(r) для LPCVD пленок аморфного, поликристаллического "гладкого" кремния и HSG-Si.

равен соответственно 11.0 и 28.4 nm, что составляет 12 и 30% от толщины пленки. Параметры S_p и S_v определяются как высота самого высокого пика и глубина самой глубокой впадины, отсчитанные от средней плоскости, определяемой из условия $\langle Z(x_i, y_k) \rangle = 0$. Поскольку по определению величина S_v равна расстоянию от нижней точки поверхности до уровня средней плоскости, то S_v соответствует средней толщине поверхностного слоя. В случае HSG-Si пленки $S_v = 86.9$ nm это означает, что средняя толщина поверхностного слоя HSG-Si пленки a-Si и poly-Si параметр S_v равен соответственно 5.54 и 13.6 nm, т.е. средняя толщина поверхностного слоя составляет соответственно 5.8 и 14.3% от средней толщины пленки.

Для характеристики пространственных и корреляционных свойств поверхности используют автокорреляционную функцию $R(\mathbf{r}) = \langle Z(\mathbf{r}')Z(\mathbf{r}'-\mathbf{r})\rangle$ [10,13–15] и корреляционную функцию высотавысота $H(\mathbf{r}) = G(\mathbf{r}) = \langle [Z(\mathbf{r}') - Z(\mathbf{r}'-\mathbf{r})]^2 \rangle$ [9–12], которые получают усреднением по всем парам точек, отстоящим одна от другой на фиксированный вектор сдвига \mathbf{r} , по выборочной площади S.

Эти функции связаны соотношением: $H(\mathbf{r}) = 2w^2 - 2R(\mathbf{r})$ [10], где $w = (\langle [Z(\mathbf{r}) - \langle Z(\mathbf{r}) \rangle]^2 \rangle)^{1/2}$ называют шириной интерфейса, а также среднеквадратической шероховатостью поверхности, $w \equiv S_q$. Для статистически изотропных поверхностей $R(\mathbf{r})$ зависит только от модуля **r**: $R(\mathbf{r}) = R(|\mathbf{r}|) = R(\mathbf{r})$.

Из автокорреляционной функции $R(\mathbf{r})$ определяют пространственные параметры поверхности [13,15]: корреляционную длину S_{al} , соответствующую модулю сдвига \mathbf{r} в направлении "быстрого" спада $R(\mathbf{r})$ до уровня R(0)/e (или 0.1 R(0)), аналогично S_{sl} — корреляционную длину в направлении "медленного" спада, S_{tr} — аспектное отношение текстуры, равное отношению S_{al}/S_{sl} . В случае изотропной поверхности S_{tr} имеет величину, близкую к единице. Для изученных нами пленок величина S_{tr} имеет значение ~ 0.9, и можно сказать, что поверхность пленок *a*-Si, poly-Si и HSG-Si изотропна на масштабе $L \sim 2\mu m$ с погрешностью ~ 10%.

Морфология многих пленок хорошо описывается в рамках модели самоаффинного скейлинга [9–12]. В этом случае: $H(r) \sim r^{2\alpha}$ при $r \ll \xi$ и $H(r) \approx 2w^2$ при $r \gg \xi$, где α — коэффициент изрезанности (roughness exponent), называемый также показателем Херста (H), ξ — латеральная корреляционная длина, которая определяет верхнюю границу области самоаффинности и является характеристикой нерегулярности поверхности в латеральном направлении. Флуктуации высоты на малых масштабах ($< \xi$) являются коррелированными и зависимыми, а на больших масштабах ($> \xi$) являются некоррелированными, т.е. случайными, и H(r) достигает постоянной величины ($2w^2$). Коэффициент α характеризует степень нерегулярности поверхности на малых масштабах ($< \xi$), он связан с фрактальной размерностью поверхности соотношением $D_H = 3 - \alpha$.

На рис. 2 приведены графики корреляционных функций H(r) для пленок *a*-Si, poly-Si и HSG-Si, построенные в логарифмическом масштабе. Функции H(r) получали усреднением 5 зависимостей $H(r) \approx G_S(x)$ [9], соответствующих различным АСМ-изображениям размерами $2 \times 2 \mu$ m. Величина коэффициента α , определенная из наклона начального участка H(r), для всех трех типов пленок имеет одинаковое значение ≈ 0.92 . Для пленок *a*-Si, poly-Si и HSG-Si найденные значения корреляционной длины ξ составляют: 21.2 ± 0.7 nm, 27.9 ± 0.5 nm и 51.1 ± 2.0 nm, a значения *w*: 1.16 ± 0.01 nm, 3.11 ± 0.02 nm и 18.6 ± 2.8 nm.

В отличие от пленок *a*-Si и poly-Si, для HSG-Si пленок на зависимости H(r), при $r > \xi$ можно заметить наличие осцилляций. Это лучше видно на графике, построенном в линейном масштабе (вставка на рис. 2). Кроме того, для HSG-Si пленок на функции PSD имеется максимум. Согласно [9–11], такое поведение усредненной функции H(r)и функции PSD указывает на то, что для описания свойств поверхности HSG-Si пленок следует использовать модель не самоаффинной, а "холмообразной" (mounded) поверхности. В случае "холмообразной" поверхности появляется еще один характерный параметр — длина волны λ , которая соответствует среднему расстоянию между "холмами". Значение параметра λ , найденное из зависимости H(r), составляет 221 ± 10 nm, а найденное из функции PSD ~ 215 ± 9 nm.

Таким образом, для трех типов LPCVD пленок кремния (*a*-Si, poly-Si и HSG-Si) получены основные параметры и функции, характеризующие шероховатость, пространственные и корреляционные свойства поверхности. Найдено, что пленки *a*-Si, poly-Si и HSG-Si имеют различные гистограммы распределения высот поверхности, поверхность пленок является изотропной на масштабе $L \sim 2 \mu$ m, пленки имеют одинаковую величину коэффициента изрезанности (показателя Херста), $\alpha = 0.92$, и различные значения латеральной корреляционной длины. Для описания морфологии пленок *a*-Si, poly-Si подходит модель самоаффинной поверхности, тогда как для HSG-Si пленок — модель "холмообразной" поверхности.

Список литературы

- [1] *Kamins T.I.* // Polycrystalline Silicon for Integrated Circuits and Displays. Kluwer Academic Publishers, Norwell, MA, 1998.
- [2] Gerritsen E., Emonet N., Caillat C. et al. // Solid State Electron. 2005. V. 49.
 P. 1767–1775.
- [3] Ino M., Miyano J., Kurogi H. et al. // J. Vac. Sci. Technol. B. 1996. V. 14. N 2. P. 751–756.
- [4] Watanabe H., Aoto N., Adachi S. et al. // J. Appl. Phys. 1992. V. 71. N 7. P. 3538-3543.
- [5] Новак А.В., Никольский Ю.В., Фокичев С.Н. // Письма в ЖТФ. 2012. Т. 38.
 В. 16. С. 1–8.
- [6] Voutsas A.T., Hatalis K.M. // J. Electrochem. Society. 1993. V. 140. N 1. P. 282–288.

- [7] Edrei R., Shauly E.N. // J. Vac. Sci. Technol. B. 2000. V. 18. N 1. P. 41-47.
- [8] Strauer Y.E., Scorth M., Sweeney J.J. // J. Vac. Sci. Technol. A. 1997. V. 15. N 3. P. 1007–1013.
- [9] Yang H.-N., Zhao Y.-P., Chan A. et al. // Phys. Rev. B. 1997. V. 56. N 7. P. 4224–4232.
- [10] Zhao Y.-P., Yang H.-N., Wang G.-C. et al. // Phys. Rev. B. 1998. V. 57. N 3. P. 1922–1934.
- [11] Pelliccione M., Karabacak T., Gaire C. et al. // Phys. Rev. B. 2006. V. 74. P. 125 420.
- [12] Vatel O., Dumas P., Chollet F. et al. // Jap. J. App. Phys. 1993. V. 32. P. 5671-5674.
- [13] Blunt L, Jiang X. // Advanced techniques for assessment surface topography: development of a basis for 3D surface texture standards "surfstand". London: Kogan Page Science, 2003.
- [14] ISO 25178-2:2012 Geometrical product specifications (GPS) surface texture: Areal — Part 2: Terms, definitions and surface texture parameters.
- [15] ASME B46.1-2009 Surface Texture (Surface Roughness, Waviness, and Lay), American national standard.