11;15

Экспериментальное исследование матрицы детекторов системы радиовидения 3-mm диапазона длин волн

© В.И. Шашкин, Ю.И. Белов, П.В. Волков, А.В. Горюнов, В.Р. Закамов, И.А. Илларионов

Институт физики микроструктур РАН, Нижний Новгород Научно-исследовательский радиофизический институт, Нижний Новгород E-mail: sha@ipmras.ru

Поступило в Редакцию 22 февраля 2013 г.

Исследовались характеристики плоской приемной матрицы антенных элементов размерностью 8 × 8 для 3-тт диапазона длин волн, нагруженной низкобарьерными планарными детекторами Мотта. Приведены экспериментальные данные измерений диаграмм направленности и чувствительности элементов в составе двумерной матрицы. Средняя ширина диаграммы направленности элемента в *E*-плоскости равна ~ 35°, в *H*-плоскости ~ 50°. В рабочем частотном диапазоне матрицы (90–100 GHz) средняя величина вольт-ваттной чувствительности составила величину порядка 9000 V/W, средняя величина эквивалентной шумовой мощности — около 5 · 10⁻¹²W · Hz^{-1/2}.

Интенсивные исследования в области создания систем получения радиоизображений (радиовидения) в диапазонах миллиметровых и субмиллиметровых длин волн проводятся около 15 лет. Интерес к этим работам связан с использованием систем для решения достаточно широкого набора приоритетных прикладных задач, среди которых противодействие терроризму, контроль технологических процессов в химическом и фармацевтическом производстве, диагностика материалов и другие военные и специальные приложения [1].

Ключевым вопросом при конструировании изображающих систем радиовидения является выбор метода сканирования пространства. На данный момент наиболее перспективным вариантом считается использование оптики, переносящей изображение объекта на плоскость, в которой расположен многоканальный матричный приемник [2]. Такие системы являются наиболее близкими к классическим видеокамерам с

44

точки зрения идеологии их построения и потенциально позволяют получить максимальное быстродействие, ограниченное только скоростью электрической коммутации каналов и чувствительностью приемных каналов.

Авторами данной работы ранее была продемонстрирована возможность плотной (с шагом $d \sim 3\lambda/2$, где λ — длина волны излучения) упаковки приемников радиоизлучения на примере построения линейки размерностью 8×1 [3]. В качестве приемников использовались планарные детекторы на основе модифицированных щелевых антенн с непосредственно включенными в них детекторными диодами [4]. В работе применялись низкобарьерные диоды Мотта на основе структуры Al/GaAs с δ -легированным слоем вблизи контакта [5]. В предлагаемой работе представлены результаты исследований характеристик созданной двумерной матрицы размерностью 8×8 , предназначенной для работы в качестве приемника в диапазоне частот 90–100 GHz.

В рамках работы были проведены исследования диаграмм направленности (ДН), вольт-ваттной чувствительности и эквивалентной шумовой мощности. В качестве источника излучения использовался калиброванный по мощности генератор, перестраиваемый в диапазоне 78.33–118.1 GHz.

Изучение диаграммы направленности важно с точки зрения задания условий на построение системы формирования изображения (объектива). Очевидно, что чем шире ДН элементов, тем более светосильный объектив может быть использован, тем выше потенциальные чувствительность и разрешение системы. Однако известно, что относительное отверстие объектива не может превышать значения 1:0.5 [6]. Более того, реально, в силу резкого увеличения аберраций для лучей с большими углами преломления, удается достигуть величин на уровне 1:0.9-1:1, что соответствует задней угловой апертуре объектива 27-29°. Таким образом, оптимальная ширина ДН лежит в диапазоне 55-60°. На рис. 1 приведены измеренные ДН в *H*- и Е-плоскостях некоторых элементов (центральных и крайних), а также усредненные ДН на частоте 94 GHz. Обозначения элементов даны в таблице. Средняя ширина ДН по центральным элементам по уровню 0.5 составила в Е-плоскости 35°, в Н-плоскости 50°. Из рисунка видно, что ДН отдельных элементов изрезаны с амплитудой отклонения от среднего значения около 1.5 dB в диапазоне углов ±60°. Как показал численный анализ, выполненный в среде 3-мерного электромагнитного

Рис. 1. Диаграммы направленности в *E*- и *H*-плоскостях на частоте 94.2 GHz: *a* — для некоторых центральных и крайних элементов матрицы (номера указаны); *b* — усредненные по всем каналам.

моделирования, такой вид ДН говорит не только о наличии межканальных связей, но и о влиянии структурных особенностей антенной решетки — корпуса матричного приемника и отверстий отвода сигнала от элемента. Искажения ДН приводят к падению общего контраста изображения и, следовательно, требуются дополнительные работы по оптимизации топологии антенного элемента, а также конструкции матрицы в целом.

Эквивалентная шумовая мощность (NEP) детекторов определялась с помощью известного соотношения $NEP = N/(R \cdot B^{1/2})$, где N —

Е-плоскость	Н-плоскость							
	8	16	24	32	40	48	56	64
	7	15	23	31	39	47	55	63
	6	14	22	30	38	46	54	62
	5	13	21	29	37	45	53	61
	4	12	20	28	36	44	52	60
	3	11	19	27	35	43	51	59
	2	10	18	26	34	42	50	58
	1	9	17	25	33	41	49	57

Нумерация антенн (пикселей) в приемной матрице

амплитуда шума в канале (определялась как среднеквадратичное отклонение сигнала в шумовой дорожке, записанной с детектора при выключенном генераторе), R — вольт-ваттная чувствительность канала, B — полоса приема. Полоса приема усилителя определялась по падению уровня собственных шумов усилителя на 3 dB и составила B = 25.9 kHz. Отметим, что ширина полосы в нашем случае определялась низкочастотным усилителем детектора.

Для измерения вольт-ваттной чувствительности *R* планарная матрица детекторов устанавливалась на расстоянии 950 mm от открытого

Рис. 2. Величина вольт-ваттной чувствительности, усредненная по всем каналам, в зависимости от частоты сигнала.

Рис. 3. Характеристики всех каналов приемной матрицы размерностью 8×8 на частоте 94.2 GHz: a — вольт-ваттная чувствительность; b — NEP.

конца волновода, облучавшего матрицу. Величина R определялась как $R = U/(P_1Q)$, где P_1 — мощность излучения, приходящаяся на площадку одного пиксела матрицы, U — среднее занчение напряжения в канале, Q — коэффициент усиления НЧ усилителя детектора (Q = 918). Для планарной антенны в матрице эффективная площадь элемента определялась как геометрическая площадь, занимаемая одним пикселем в матрице, т.е. принималась равной квадрату периода расположения детекторов (a = 4.5 mm). Отметим, что данная оценка эффективной площади антенны является завышенной, поскольку часть падающего излучения попадает в межпиксельную область и не участвует в фор-

мировании сигнала детектора. Тем не менее такая оценка представляется более адекватной для матричных систем, поскольку кроме непосредственно электродинамических характеристик антенны учитывает плотность и эффективность упаковки элементов. На рис. 2 приведены значения вольт-ваттной чувствительности, усредненной по каналам для нескольких частот. Из рисунка видно, что матрица эффективно работает в полосе 90–100 GHz. На рис. 3 приведены значения вольт-ваттной чувствительности и NEP для всех каналов на частоте 94.2 GHz. Из приведенных данных видно, что крайние столбцы обладают примерно втрое худшей чувствительностью по сравнению с внутренними.

Таким образом, в работе были исследованы характеристики структурных элементов разработанной двумерной приемной матрицы размерностью 8 × 8 для 3-т диапазона длин волн. Достигнутые параметры: ширина и форма ДН (средняя ширина ДН по центральным элементам по уровню 0.5 составила в *E*-плоскости 35°, в *H*-плоскости 50°, амплитуда отклонения от среднего значения около 1.5 dB в диапазоне углов ±60°), удовлетворительно согласующиеся с рефрактивными светосильными объективами, величина NEP ~ $5 \cdot 10^{-12}$ W/Hz^{1/2} в полосе 90–100 GHz, демонстрируют потенциал для построения системы радиовидения реального времени.

Работа выполнена при поддержке РФФИ по проектам № 12-02-12006-офи_м, № 11-02-00572_а.

Список литературы

- [1] Oka S., Togo H., Kukutsu N., Nagatsuma T. // Progress in Electromagnetics Research Letters. 2008. V. 1. P. 197–204.
- [2] Rebeiz G.M. // Proc. IEEE. 1992. V. 80. N 11. P. 1748-1770.
- [3] Закамов В.Р., Мурель А.В., Шашкин В.И. // Контроль. Диагностика. 2009. № 5. С. 15–19.
- [4] Шашкин В.И., Дрягин Ю.А., Закамов В.Р., Кривов С.В., Кукин Л.М., Мурель А.В., Чеченин Ю.И. // Радиофизика. 2007. Т. 51. № 12. С. 1077–1087.
- [5] Шашкин В.И., Мурель А.В., Дроздов Ю.Н., Данильцев В.М., Хрыкин О.И. // Микроэлектроника. 1997. Т. 26. В. 1. С. 57–61.
- [6] Слюсарев Г.Г. Расчет оптических систем. Л.: Машиностроение, 1975.