от Микроканальный лавинный фотодиод с быстрым временем восстановления параметров

© 3. Садыгов, Х. Абдуллаев, Н. Анфимов, Ф. Ахмедов, Р. Мадатов, Р. Мухтаров, А. Ольшевский, А. Титов

Объединенный институт ядерных исследований, Дубна, Россия Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова, Москва, Россия Институт физики НАН Азербайджана, АZ-1143, Баку, Азербайджан Институт радиационных проблем НАН Азербайджана, AZ-1143, Баку, Азербайджан Азербайджанская национальная академия авиации, AZ-1045, Баку, Бина, Азербайджан E-mail: zsadygov@gmail.com

В окончательной редакции 7 февраля 2013 г.

Рассмотрены конструкция и принцип работы нового микроканального лавинного фотодиода с быстрым временем восстановления параметров. Отличительной чертой нового прибора является то, что при рабочем потенциале на приборе n^+ -области (пиксели), глубоко погруженные в эпитаксиальный слой *p*-типа проводимости, полностью обедняются, и поэтому исключается возможность накопления в них умноженных носителей заряда. Это позволяет достичь времени восстановления прибора около 50 ns при коэффициенте усиления фототока, равном 250.

В ряде экспериментов физики элементарных частиц требуются высокочастотные лавинные фотоприемники с широким диапазоном линейности фотоотклика. Известны кремниевые лавинные фотодиоды со временем восстановления параметров около 50 ns [1–3]. Они содержат матрицу из отдельных p-n-переходов (пикселей) с характерным размером от 25 до 100 μ m, выполненных на поверхности кремниевой подложки. Каждый пиксель соединен с общей проводящей шиной посредством индивидуального пленочного резистора с сопротивлением около 10⁶ Ω . Однако эти приборы не имеют достаточно широкого диапазона линейности фотоотклика из-за низкой плотности

7

пикселей. Конструкция прибора такова, что значительную часть его поверхности занимают проводящая шина, пленочные микрорезисторы и охранные кольца пикселей. Поэтому увеличение плотности пикселей выше 2000 pixel/mm² приводит к значительному сокращению доли чувствительной площади прибора.

В работах [4,5] предложены кремниевые микроканальные лавинные фотодиоды (МЛФД) с высоким диапазоном линейности фотоотклика, обеспечиваемым высокой плотностью пикселей (до $4 \cdot 10^4$ pixel/mm²). Эти приборы содержат кремниевую подложку *n*-типа проводимости, на которой выращены два эпитаксиальных слоя *p*-типа проводимости, причем между эпитаксиальными слоями расположена матрица из отдельных n^+ -областей. Они могут с успехом применяться в случаях, когда требуется регистрировать достаточно редкие световые импульсы [6]. Однако эти приборы имеют ограниченную область применения, например они не могут применяться при большой частоте повторения световых импульсов из-за большого времени восстановления параметров после каждого приема светового импульса. Это связано с принципом работы прибора.

Лавинное умножение носителей заряда в вышеупомянутых приборах происходит в приграничной области верхнего (второго) эпитаксиального слоя с *n*⁺-областями, где создается высокая напряженность электрического поля [3,4]. Гашение лавинного процесса происходит изза падения потенциала в нем ниже пробойного благодаря наличию в каждом микроканале индивидуальной потенциальной ямы, образованной n^+ -областью, расположенной между эпитаксиальными слоями р-типа проводимости. Умноженные электроны накапливаются в потенциальных ямах, что приводит к уменьшению электрического поля во втором эпитаксиальном слое ниже некоторого порогового значения, в результате чего лавинный процесс в данном канале прекращается. Восстановление прежнего поля в микроканале умножения происходит за счет стекания накопленного заряда в объем подложки через прямо смещенный *p*-*n*-переход, образованный между первым эпитаксиальным слоем и п-областью. Именно время стекания этого накопленного заряда, которое превышает сотни микросекунд, определяет время восстановления параметров прибора.

В данной работе представлен новый МЛФД с улучшенным временем восстановления параметров. Образцы МЛФД содержат кремниевую подложку *n*-типа проводимости с удельным сопротивлением 15 Ω · cm,

на которой выращены два кремниевых эпитаксиальных слоя *p*-типа проводимости при температуре 1150°С. После выращивания первого эпитаксиального слоя на его поверхности сформировалась матрица из n^+ -областей путем ионного легирования. Образцы имели следующие геометрические параметры: фоточувствительная площадь — 3×3 mm²; толщины первого и второго эпитаксиального слоя *p*-типа проводимости — $3.5 \,\mu$ m; удельные сопротивления обоих эпитаксиальных слоев — $7 \,\Omega \cdot \text{сm}$ (или концентрация примесей — $1.85 \cdot 10^{15} \pm 5\%$ atom/cm³); диаметр пикселей (т.е. n^+ -областей) вдоль поверхности — $2 \,\mu$ m; толщина пикселей (n^+ -областей) — около $0.8 \,\mu$ m; интервал между пикселями вдоль поверхности — $3 \,\mu$ m; поверхностная плотность пикселей – $4 \cdot 10^4$ pixel/mm². Образцы МЛФД были изготовлены совместно с фирмой Zecotek Photonics Inc.

Основное отличие нового МЛФД от прибора, описанного в работе [4], заключается в том, что при некотором напряжении смещения, величиной ниже потенциала пробоя, потенциальные ямы, образованные n^+ -областями, исчезают. Это связано с тем, что в данном приборе концентрация донорных примесей в n^+ -областях снижена так, чтобы эти области могли полностью обедняться до достижения потенциала пробоя. Экспериментально установлено, что для полного обеднения n^+ -области поверхностная плотность донорных примесей в ней не должна превышать $1.6 \cdot 10^{12} \pm 5\%$ atom/cm².

Ниже приведены результаты исследований двух образцов МЛФД с поверхностной плотностью донорных примесей (в данном случае это атомы мышьяка) в n^+ -областях $N_{d1} = 1.3 \cdot 10^{12} \pm 5\%$ atom/cm² и $N_{d2} = 3.3 \cdot 10^{12} \pm 5\%$ atom/cm². Здесь второй тип МЛФД с $N_{d2} = 3.3 \cdot 10^{12} \pm 5\%$ аtom/cm², имеющий потенциальные ямы во всем диапазоне напряжения смещений, используется как базовый прибор для сравнения с первым типом МЛФД с $N_{d1} = 1.3 \cdot 10^{12} \pm 5\%$ atom/cm².

На рис. 1 представлена осциллограмма фотоотклика образца МЛФД с $N_{d1} = 1.3 \cdot 10^{12}$ atom/cm² при освещении световыми импульсами длительностью 300 µs. Сигнал снимался с нагрузки 5 kΩ. В качестве источника света использовался светодиод с длиной волны 450 nm, излучение которого полностью поглощалось в верхней части второго эпитаксиального слоя, т. е. до глубины, на которой расположены n^+ -области. В интервале напряжения смещения 0–15 V осциллограмма имеет характерный излом на переднем фронте (кривая *I*), что свидетельствует о накоплении фотоэлектронов в потенциальных ямах, образованных

Рис. 1. Осциллограмма фотоотклика образца МЛФД при двух значениях напряжения смещения (*a*) и соответствующие им зонные диаграммы (*b*). 1, 2 — напряжения смещения 15 и 25 V, 3 — кремниевая подложка *n*-типа, 4 — первый эпитаксиальный слой кремния *p*-типа, 5 — *n*⁺-область, 6 — второй эпитаксиальный слой кремния *p*-типа.

 n^+ -областями [4]. Однако при достижении потенциала 25V передний фронт фотоотклика полностью выпрямляется (кривая 2), что свидетельствует об отсутствии накопления фотоэлектронов в приборе, т.е. n^+ -области полностью обеднены. Соответствующие зонные диаграммы приведены на рис. 1.

Рис. 2. Зависимость амплитуды фотоотклика МЛФД на второй световой импульс в зависимости от времени задержки: *1* — разработанный МЛФД, *2* — известный МЛФД, описанный в работе [1].

Время восстановления пикселей МЛФД измерялось методом парных световых импульсов с одинаковым числом фотонов, направляемых на рабочую поверхность образца. Для того чтобы все пиксели участвовали в лавинном процессе, плотность фотонов на поверхности образца превышала плотность пикселей в МЛФД. Затем измерялась амплитуда фотоотклика прибора на второй световой импульс в зависимости от его временной задержки относительно фотоотклика первого светового импульса. Величина задержки, при которой амплитуда фотоотклика второго импульса достигала 95% амплитуды фотоотклика первого импульса, принималась как характерное время восстановления пикселей прибора. Для предотвращения нагрева светодиода измерения проводились при низкой частоте следования парных импульсов, равной 100 Hz. Число фотонов в световом импульсе определялось с помощью фотодиода S1223 японской фирмы Хамаматсу (Hamamatsu) с известной спектральной чувствительностью.

На рис. 2 приведены относительные амплитуды *J* фотоотклика двух вышеуказанных типов МЛФД на второй световой импульс в зависимости от времени задержки *τ* относительно фотоотклика прибора на первый световой имульс. Оба типа МЛФД имели коэффициент

усиления около 250. Для этого к базовому прибору прикладывалось напряжение величиной 68 V, а к новому прибору — 128 V. Повышенное значение рабочего напряжения нового МЛФД связано с полным обеднением n^+ -областей в приборе. В качестве источника света использовался светодиод с длиной волны излучения 450 nm и длительностью 50 ns. Плотность фотонов на поверхности МЛФД достигала величины $6 \cdot 10^4$ photon/mm², которая превышала плотность пикселей в МЛФД ($4 \cdot 10^4$ pixel/mm²). Кривая *1* на рисунке показывает, что пиксели предложенного типа МЛФД восстанавливаются на несколько порядков быстрее, чем пиксели базового прибора (кривая *2*). Установлено, что характерное время восстановления пикселей базового прибора составляет 1300 μ s, тогда как в предложенном приборе этот параметр не превышает 50 ns.

Таким образом, предложен и реализован новый лавинный микроканальный фотодиод с быстрым восстановлением (около 50 ns) рабочих параметров. Прибор имеет высокую плотность пикселей $(4 \cdot 10^4 \text{ pixel/mm}^2)$, которая обеспечивает широкий диапазон линейности фотоотклика. Такой прибор может успешно применяться в качестве фотоприемника в высокочастотных детекторах элементарных частиц и в волоконно-оптических устройствах. Предложенная конструкция прибора также может применяться для создания аналогичных лавинных фотоприемников с высоким коэффициентом усиления на базе ряда узкозонных полупроводников, применяемых в инфракрасной технике.

Список литературы

- [1] Stoykov A. et al. // J. Instrumentation. 2007. V. 2. P. 06005.
- [2] Renker D., Lorenz E. // J. Instrumentation. 2009. V. 4. P. 04004.
- [3] Sadygov Z. et al. // Nucl. Instr. and Meth. A. 2006. V. 567. P. 70.
- [4] Садыгов З. и др. // Письма в ЖТФ. 2010. Т. 36. В. 11. С. 83.
- [5] Садыгов З.Я. Патент России № 2316848, приоритет от 01.06.2006.
- [6] Anfimov N. et al. // Nucl. Instr. and Meth. A. 2010. V. 617. P. 78.