05;11 Синтез наноразмерных слоев нитрида алюминия

© Л.А. Акашев, Н.А. Попов, В.А. Кочедыков, В.Г. Шевченко

Институт химии твердого тела УрО РАН, Екатеринбург Институт высокотемпературной электрохимии УрО РАН, Екатеринбург E-mail: n168@mail.ru

Поступило в Редакцию 3 сентября 2012 г.

Эллипсометрическим методом исследовано взаимодействие поверхности поликристаллического алюминия с азотом при медленном нагреве до температуры 623°С и давлении 1.25 atm. Показано, что процесс образования наноразмерного сплошного слоя нитрида алюминия происходит в интервале температур 520–580°С и выше. Максимальная толщина синтезированного наноразмерного слоя нитрида алюминия составляла 32 nm. Образование нитрида на поверхности алюминия подтверждено методом ИК-спектроскопии на порошках с удельной поверхностью 6.4 m²/g.

Механизм химического связывания азота на поверхности алюминия представляет интерес в изучении коррозионных процессов алюминия в воздушной среде, получении покрытий из нитрида алюминия, обладающего высокой теплопроводностью и электроизоляционными свойствами [1], а также при учете условий синтеза и горения наноразмерных порошков алюминия [2]. В одной из первых работ по изучению кинетики азотирования массивных стержней алюминия [3] было описано манометрическое исследование данного процесса в интервале температур 450-625°С при давлении 100 mmHg, были получены сведения о скорости реакции алюминия с азотом, зависимости начального периода процесса от давления N2 и качества подготовки поверхности образца. Предварительная очистка стержней до зеркальной поверхности и удаление естественного окисла существенным образом смещали интервал начального периода азотирования. В работе [4] начало реакции азотирования прессованных таблеток порошка алюминия при давлениях 0.5, 4, 7 MPa происходило в интервале температур 580-520°С. В [5] методом дифференциально-термического анализа

26

показано, что для порошка алюминия хлопьевидной формы процесс азотирования начинался уже около 450°С и заканчивался до 600°С. В работах [6,7] автором подробно исследованы закономерности взаимодействия порошков алюминия с азотом в широком интервале температур. Величина дисперсности порошков влияет на температуру начала реакции, характер кинетики (двухстадийность), а также состав газов на выходе из печи.

В приведенных выше работах экспериментальные данные о прямом азотировании алюминия противоречивы. Существенное влияние на этот процесс оказывают форма алюминия (порошок, прессованная таблетка, стержень и т.д.), качество подготовки, чистота алюминия и азота, давление азота. Для исследования начальной стадии взаимодействия поверхности поликристаллических образцов с азотом необходимо применение методов, позволяющих, не прерывая процесс, получать сведения о толщине наноразмерного слоя нитрида алюминия. С этой целью в данной работе использовался метод эллипсометрии, наиболее подходящий для исследования процессов окисления, адсорбции газов на поверхности твердых тел, контроля роста тонких пленок [8].

В работе использовали образец поликристаллического алюминия (чистотой 99.999%) размером 10 × 8 × 3 mm, верхняя плоская грань которого предварительно полировалась алмазными пастами до получения зеркальной поверхности. По причине низкой твердости алюминия использовали пасты крупностью сначала АСМ 7/5, потом 1/0, нанесенные на мягкие полировочные ткани. После полировки образец тщательно промывали в спирте и высушивали на воздухе при комнатной температуре. Затем образец помещали в вакуумную камеру, снабженную с двух сторон окнами из плавленого кварца. Камера сконструирована таким образом, чтобы луч лазера эллипсометра падал перпендикулярно на входное окно, а отраженный луч был перпендикулярен окну, расположенному на выходе. Измерения поляризационных углов Δ и Ψ в ходе эксперимента проводили на эллипсометре ЛЭФ-3М с длиной волны $\lambda = 0.6328 \,\mu m$ по двум измерительным зонам (с одним положением компенсатора), при угле падения, равном 82°. Вакуумная система состояла из двух насосов: роторно-лопастного 2DSE-15 и магниторазрядного Норд-100, с применением азотной ловушки. Подробное описание установки представлено в работе [9]. После откачки воздуха производили двух-трехкратную промывку вакуумной камеры азотом. Перед началом нагрева давление азота в камере составляло 1.25 atm

28

(0.1226 МРа). Изучение взаимодействия азота марки ОСЧ 1 сорта (чистота 99.999%) с алюминием проводили в неизотермических условиях постепенного нагрева камеры в диапазоне температур 25-623°С. При достижении 620°C нагрев прекращался, после медленного охлаждения до комнатной температуры в течение нескольких часов образец алюминия удаляли из камеры. Измерения оптических параметров исследуемой системы после охлаждения проводили иммерсионным методом, разработанным в [10], в двух средах: анисовом масле и на воздухе с соответствующими показателями преломления ($n_0 = 1.5$ и $n_0 = 1$). Эллипсометрические углы Δ и Ψ измеряли вне вакуумной камеры до и после взаимодействия с азотом. Для измерений в анисовом масле использовали специально сконструированную ячейку для угла падения света 65°. При решении основного уравнения эллипсометрии использовали двухслойную модель: нижний слой — оксид алюминия с показателем преломления n₂ = 1.6, коэффициент поглощения k₂ = 0, верхний слой — нитрид алюминия с оптическими постоянными $n_1 = 2.1, k_1 = 0$. Подложкой соответственно служил массивный алюминий с полированной поверхностью ($n_3 = 1.65, k_3 = 6.5$). Для подтверждения образования нитрида на поверхности и сопоставления с полученной пленкой на массивном образце в качестве "свидетеля" использовали порошок алюминия с удельной поверхностью 6.4 m²/g, с которого были получены ИК-спектры пропускания (Brucker FT-IR Vertex-80). Исходный порошок был помещен в вакуумную камеру вместе с массивным алюминием и подвергался азотированию в тех же условиях.

Изменение эллипсометрических параметров Δ и Ψ в процессе нагрева в атмосфере азота представлено на рис. 1, *а*. Временные зависимости толщины нитридного слоя на поверхности массивного алюминия и изменение температуры показаны на рис. 1, *b*, *c*. Использованная двухслойная модель адекватно описывает процесс образования нитрида алюминия с показателем преломления $n_1 = 2.1$ на поверхности пассивирующей оксидной пленки алюминия, что согласуется со справочными данными по показателю преломления [1]. При этом толщина оксидного слоя остается постоянной 5.5 nm в течение всего промежутка времени исследования.

Как видно из рис. 1, a-c, до температуры 520°С в заданных условиях не происходит изменений в оптических параметрах. Начиная с 520 и до 570–580°С наблюдается снижение значений параметра Δ на \sim 30° (что

Рис. 1. Зависимость эллипсометрических параметров Δ и Ψ поверхности поликристаллического алюминия от времени взаимодействия с азотом (a), зависимости температуры в вакуумной камере (b) и толщин оксидного и нитридного слоя от времени взаимодействия с азотом (c), угол падения луча света $\varphi = 82^{\circ}$.

свидетельствует об образовании или значительном возрастании толщины пленки), Ψ возрастает на $\sim 2^\circ$ (это свидетельствует о небольшом изменении качества морфологии или структуры поверхности). Начало образования AlN происходит при температуре 520°C и замедляется при температуре 570–580°C, максимальная толщина слоя соответствует 32 nm.

Температура начала взаимодействия азота с алюминием и достаточно быстрый рост пленки AlN на поверхности мы связываем с превращением аморфной пленки оксида в γ -Al₂O₃, в процессе которого облегчается транспорт катионов алюминия к внешней поверхности оксида; помимо этого, ионный радиус катиона алюминия значительно меньше ковалентного радиуса азота. Это превращение происходит, по данным [3,11–13], при 475–500°С. Рост толщины пленки приводит к торможению процесса взаимодействия и переходу его в диффузионный режим.

В [1] приводится формула Смителса, согласно которой количество газа, диффундирующего через единицу площади на единицу длины в единицу времени через вещество, равно:

$$D = \frac{n}{d} \sqrt{p} \, e^{-\frac{E_D}{-2RT}},\tag{1}$$

где n — константа, d — толщина слоя вещества, p — давление газа, E_D — энергия активации. Из данного выражения видно, что скорость диффузии обратно пропорциональна толщине. Данная зависимость должна соблюдаться вплоть до температуры плавления алюминия, что подтверждается в нашем случае в интервале 575–623°C в координатах $d-\tau$ (рис. 1, c).

Рис. 2. ИК-спектр пропускания порошка алюминия с удельной поверхностью 6.4 m²/g после взаимодействия с азотом. Полоса поглощения при 705 cm⁻¹ соответствует нитриду алюминия.

ИК-спектр пропускания алюминиевого порошка после азотирования представлен на рис. 2. Как видно из рисунка, имеется одна полоса поглощения при $705\,{\rm cm}^{-1}$, соответствующая нитриду алюминия.

Таким образом, эллипсометрическим методом показано, что фазовый переход аморфной пленки оксида в γ -Al₂O₃, способствующий быстрому росту пленки AlN на поверхности алюминия, может быть использован для синтеза нитридных наноразмерных слоев на поверхности металлов и сплавов.

Список литературы

- [1] Самсонов Г.В. Нитриды. Киев: Наук. думка, 1969. 380 с.
- [2] *Фёдоров С.Г., Гусейнов Ш.Л., Стороженко П.А.* // Российские нанотехнологии. 2010. Т. 5. № 9–10. С. 27–39.
- [3] Sthapitanonda P., Margrave J. // J. Physical Chemistry. 1956. V. 60. P. 1628–1633.
- [4] Okada T., Toriyama M., Kanzaki S. // J. Materials Science. 2000. V. 35. P. 3105–3111.

- [5] Salahi E., Moztarzadeh F., Marghusian V., Heinrich J.G // J. Science and Technology. 2003. V. 14. Is. 55c. P. 857-864.
- [6] Коршунов А.В. // Известия Томского политехнического университета. 2010. Т. 316. № 3. С. 17–23.
- [7] Коршунов А.В. // Журнал физической химии. 2011. Т. 85. № 7. С. 1308-1316.
- [8] *Tompkins H.G., Irene E.A.* // Handbook of Ellipsometry. Norwich, N.Y.: William Andrews Pub. 2005. 891 p.
- [9] Акашев Л.А., Кононенко В.И., Кочедыков В.А. // Расплавы. 1988. Т. 2. № 4. С. 53–57.
- [10] Егорова Г.А., Потапов Е.В., Раков А.В. // Оптика и спектроскопия. 1976. Т. 41. № 4. С. 643-647.
- [11] Vargel C. Corrosion of aluminium.Netherlands: Elsevier, 2004. 700 p.
- [12] Кнунянц И.Л. и др. // Химическая энциклопедия. М.: Сов. энциклопедия, 1988. Т. 1. 623 с.
- [13] Шеламов В.А., Литвинцев А.И. // Физико-химические основы производства полуфабрикатов из спеченных алюминиевых порошков. М.: Металлургия, 1970. 280 с.