05

Магнитопропускание в ИК-диапазоне и магнитосопротивление пленок манганита Nd_{0.52}Sr_{0.48}MnO_{3-δ}/LaAlO₃

© Е.В. Мостовщикова, Н.Н. Лошкарева, Н.И. Солин, Ю.М. Николаенко, В.А. Хохлов, А.Ю. Прохоров

Институт физики металлов УрО РАН, Екатеринбург, Россия Донецкий физико-технический институт им. А.А. Галкина НАН Украины, Донецк, Украина E-mail: mostovsikova@imp.uran.ru

Поступило в Редакцию 12 апреля 2012 г.

В пленке манганита Nd_{0.52}Sr_{0.48}MnO₃/LaAlO₃ при температуре T = 225 K обнаружено большое отрицательное магнитопропускание $(t_H - t_{H=0})/t_{H=0} \approx$ $\approx -14\%$ в магнитном поле H = 8 kOe на длине волны 8.8 μ m и отрицательное магнитосопротивление $(\rho_H - \rho_{H=0})/\rho_{H=0} \approx -50\%$ в поле H = 10 kOe. Обсуждается влияние вакансий по кислороду на величину эффектов. Высокая величина эффектов позволяет рекомендовать пленки Nd_{0.52}Sr_{0.48}MnO₃ для использования в оптоэлектронных магнитоуправляемых устройствах и в спинтронике.

Поиск новых оптических функциональных материалов для управления интенсивностью инфракрасного (ИК) излучения является актуальной задачей. Одними из таких материалов являются манганиты с колоссальным отрицательным магнитосопротивлением, в которых был обнаружен эффект отрицательного магнитопропускания в ИК-области спектра — уменьшение пропускания (интенсивности прошедшего инфракрасного излучения) при приложении магнитного поля. Магнитопропускание выражается формулой $\Delta t/t = (t_H - t_{H=0})/t_{H=0}$, где t_H — пропускание света в магнитном поле, $t_{H=0}$ — пропускание без поля. Пропускание t равно отношению интенсивности излучения, прошедшего через образец, к интенсивности падающего света. Впервые магнитопропускание было обнаружено в монокристалле La_{0.9}Sr_{0.1}MnO₃ толщиной 50 μ m [1], а позднее исследовано в эпитаксиальных пленках манганитов различного состава [2-5]. На основе этого эффекта могут быть созданы устройства для управления интенсивностью светового потока с помощью магнитного поля. Такие устройства (модуляторы,

23

ослабители ИК-излучения и т.п.) имеют более простую конструкцию по сравнению с традиционными магнитооптическими устройствами на основе эффекта Фарадея, поскольку работают на неполяризованном свете. На основе эффекта магнитопропускания, обнаруженного в пленке La_{0.82}Na_{0.18}MnO₃, был создан модулятор ИК-излучения, работающий при комнатной температуре [6].

Магнитопропускание в ИК-диапазоне спектра, где доминирует взаимодействие света с носителями заряда, связано с переходом изоляторметалл и наблюдается вблизи температуры Кюри. Магнитопропускание зависит от относительного объема ферромагнитной металлической фазы в манганите [3–5]: величина эффекта больше для тех составов, в которых больше объем ферромагнитной фазы при $T < T_C$. До настоящего времени эффект магнитопропускания пленок манганитов Ln_{1-x}A_xMnO₃ (Ln = La, Pr, A = Ca, Sr) изучался преимущественно для "оптимального" состава $x \approx 0.3$. При подробном изучении магнитопропускания совместно с магнитосопротивлением показано, что на величину магнитопропускания влияет не только тип и уровень легирования, но и сложная морфология пленок и напряжения на границе пленка-подложка [2–5,7].

Данная работа посвящена исследованию эффектов магнитопропускания и магнитосопротивления пленок манганита $Nd_{1-x}Sr_xMnO_3$ с "половинным легированием", $x \approx 0.5$, т.е. вблизи границы между дырочными манганитами (x < 0.5) и электронными (x > 0.5), и выяснению возможности использования эффектов для создания магнитоуправляемых устройств.

Особенностью объемных кристаллов манганита $Nd_{1-x}Sr_xMnO_3$ с x = 0.5 является существование при охлаждении двух магнитных фазовых переходов: перехода из парамагнитного полупроводникового состояния в ферромагнитное металлическое при $T_C \approx 250$ К и перехода из ферромагнитного металлического состояния в антиферромагнитное изолирующее с зарядовым упорядочением при $T_{CO} = 160$ K [8]. При незначительном изменении концентрации катионов $\Delta x = \pm 0.02$ или отклонении от кислородной стехиометрии зарядовое упорядочение нарушается, изолирующее состояние исчезает. В пленках Nd_{0.5}Sr_{0.5}MnO₃ наличие зарядового упорядочения зависит от напряжений на границе пленка-подложка, толщины пленки и кристаллографической ориентации подложки [9].

Пленки $Nd_{0.52}Sr_{0.48}MnO_{3-\delta}$ были получены методом магнетронного напыления на постоянном токе с керамической мишенью на подложке

LaAlO₃(001) и имели толщину 120 nm (подробно технология описана в [10]). Напыление производилось в атмосфере Ar+18% кислорода, температура подложки составляла 650°С. После напыления одна пленка отжигалась в потоке воздуха при $T = 900^{\circ}$ C в течение 11 h (далее пленка 1), другая пленка не отжигалась (пленка 2). Исследование химического состава проводилось методом растровой электронной микроскопии с применением микроанализатора на микроскопе JOL-6490LV (JEOL-Япония). Состав пленок соответствовал формуле Nd_{0.52}Sr_{0.48}MnO₃. Рентгеновский дифракционный анализ был проведен для обеих пленок с помощью дифрактометра Rigaku с Си Ка-излучением. Для пленки и подложки наблюдались только основные брэгговские пики высокой интенсивности. Электронная микроскопия высокого разрешения (HREM) проводилась с использованием микроскопа Philips CM300UT-FEG с полевой эмиссией пушки при 300 kV, разрешением ~ 0.12 nm. Пленки обладали чистым интерфейсом без промежуточного аморфного слоя и были ориентированы вдоль оси с манганита.

Спектры и температурные зависимости пропускания пленок исследовались с помощью высокочувствительного инфракрасного спектрометра в диапазоне длин волн $1-11\,\mu$ m, в интервале температур 90–293 К, в магнитном поле H = 8 кОе и без поля. Пропускание пленки измерялось относительно подложки LaAlO₃. Электросопротивление было измерено 4-контактным методом в магнитном поле 10 кОе на установке PPMS в Центре магнитометрии ИФМ УрО РАН.

На рис. 1 показаны температурные зависимости электросопротивления $\rho(T)$ пленок Nd_{0.52}Sr_{0.48}MnO_{3- $\delta}} и пропускания <math>t(T)$ на длине волны $\lambda = 8.8 \,\mu$ m. В парамагнитной области зависимости $\rho(T)$ обеих пленок имеют полупроводниковой характер $(d\rho/dT < 0)$. При охлаждении пленки 1 наблюдается резкое уменьшение сопротивления и металлический характер $\rho(T)$ $(d\rho/dT > 0)$ ниже температуры $T \approx 240$ K, которая близка к температуре Кюри пленки такого же состава [10], но ниже, чем $T_C \approx 250$ K для монокристалла Nd_{0.52}Sr_{0.48}MnO₃ [11]. Температурная зависимость пропускания t(T) также демонстрирует смену полупроводникового поведения на металлическое вблизи T = 240 K и полностью коррелирует с температурной зависимостью электросопротивления $\rho(T)$, что характерно для манганитов с односвязной металлической областью в ферромагнитной фазе [3]. Для пленки 2 электросопротивление имеет более высокое значение, переход из по-</sub>

Рис. 1. Температурные зависимости электросопротивления ρ и пропускания света *t* на длине волны $\lambda = 8.8 \,\mu\text{m}$ пленок Nd_{0.52}Sr_{0.48}MnO_{3- δ}/LaAlO₃: *I* — отожженная пленка, *2* — неотожженная пленка.

лупроводникового состояния в металлическое в $\rho(T)$ и t(T) размыт и начинается при более низкой температуре, $T \sim 180$ K, чем в пленке 1.

Спектры оптической плотности $D(\lambda) = \ln 1/t$, пропорциональной поглощению, в ИК-диапазоне, в области между началом фундаментального поглощения при малых длинах волн и началом фононного спектра при больших длинах волн, также демонстрируют различие между отожженной и неотожженной пленками (рис. 2). Спектры измерены при двух температурах: при T = 293 K, соответствующей парамагнитной области, и при T = 90 K, соответствующей ферромагнитному состоянию пленок. Для отожженной пленки 1 наблюдается сильное увеличение оптической плотности при переходе из парамагнитного в ферромагнитное состояние, что связано с металлической проводимостью пленки при T = 90 K. Неотожженная пленка 2 прозрачна как при T = 293 K, так и при T = 90 K, что согласуется с ее высоким сопротивлением при этих температурах.

Температурные зависимости магнитопропускания $\Delta t/t$ и магнитосопротивления $\Delta \rho / \rho = (\rho_H - \rho_{H=0}) / \rho_{H=0}$ показаны на рис. 3. Видно,

Рис. 2. Спектры оптической плотности пленок $Nd_{0.52}Sr_{0.48}MnO_{3-\delta}/LaAlO_3$ при температурах 293 и 90 К: *I* — отожженная пленка, *2* — неотожженная пленка.

что магнитосопротивление обеих пленок достигает большой величины -50%. Максимумы абсолютной величины $\Delta \rho / \rho$ наблюдаются при температурах $T \sim 225$ и ~ 150 K для пленок I и 2, соответственно, т.е. ниже температур максимумов $\rho(T)$. Как видно из рис. 3, большое магнитопропускание, достигающее -14% при $T \sim 225$ K, наблюдается только для пленки I, хотя магнитосопротивление в обеих пленках приблизительно одинаково вблизи T_C . В пленке 2 величина $\Delta t/t$ составляет менее -2%.

Переход из парамагнитного полупроводникового состояния в ферромагнитное металлическое в легированных манганитах вблизи T_C происходит посредством образования областей ("капель") с ферромагнитным металлическим состоянием, объем которых растет при охлаждении [12,13]. При этом приложение магнитного поля приводит к увеличению размера (объема) металлических "капель" и эффектам магнитосопротивления и магнитопропускания.

Различия в поведении свойств двух пленок связаны с различной нестехиометрией по кислороду. В отожженной пленке 1 дефицит по

Рис. 3. Температурные зависимости: *a* — магнитосопротивления в магнитном поле 10 kOe, *b* — магнитопропускания при $\lambda = 8.8 \,\mu$ m в магнитном поле $H = 8 \,\text{kOe}$ пленок Nd_{0.52}Sr_{0.48}MnO_{3- δ}/LaAlO₃. *I* — отожженная пленка, *2* — неотожженная пленка.

кислороду существенно меньше, чем в неотожженной пленке 2. В пленке 2 с большим кислородным дефицитом, который приводит к появлению в сильно легированном дырочном манганите $Nd_{0.52}Sr_{0.48}MnO_{3-\delta}$ носителей заряда — электронов, увеличение электросопротивления и уменьшение температуры Кюри обусловлено дырочно-электронной компенсацией и уменьшением двойного обмена. В результате электронное состояние пленки 2 более неоднородно: при охлаждении ниже T_C формируются каналы проводимости, образующие сквозную металлическую проводимость, но односвязная ферромагнитная металлическая область, как в пленке 1, отсутствует. Это объясняет меньшую величину эффекта магнитопропускания в пленке 2, величина которого, как отмечалось выше, зависит от объема ферромагнитной металлической фазы.

Величина магнитопропускания $\Delta t/t \approx -14\%$ при $T = 225 \,\mathrm{K}$ пленки 1 манганита $Nd_{0.52}Sr_{0.48}MnO_{3-\delta}/LaAlO_3$ вблизи "половинного легирования" уступает величине магнитопропускания $\Delta t/t \approx -25\%$ пленки $La_{0.67}Ca_{0.33}MnO_3/LaAlO_3$ при T = 270 K [2], но превосходит величины магнитопропускания для пленок других дырочных манганитов вблизи "оптимальной" концентрации $x \sim 0.3$: например, для пленки La_{0.67}Sr_{0.33}MnO₃/SrTiO₃ величина $\Delta t/t$ составляла ~ 6% при $T = 350 \,\mathrm{K}$ [7], для пленки La_{0.82}Na_{0.18}MnO_{3+ δ}, использованной для создания модулятора излучения, величина $\Delta t/t$ была $\sim 9\%$ при T = 303 K [6]. При этом глубина модуляции $m = (I_H - I_0)/(I_H + I_0)$, где I_H и I₀ — интенсивность прошедшего ИК-излучения в магнитном поле и без поля, в отожженной пленке Nd_{0.52}Sr_{0.48}MnO₃ составила $m \approx 7\%$ при температуре максимума магнитопропускания, а величина пропускания $t \approx 90\%$, т.е. выше, чем в пленке La_{0.82}Na_{0.18}MnO_{3+ δ}. Все вышеуказанные значения $\Delta t/t$ получены в магнитном поле $H = 8 \,\mathrm{kOe}$ на длинах волн диапазона $\lambda = 6 - 8.8 \,\mu$ m. Для пленки 1, так же как для пленок манганитов с x ~ 0.3, эффект магнитопропускания имеет место в диапазоне $1 < \lambda < 11 \, \mu m$.

Таким образом, обнаружено большое магнитопропускание пленки $Nd_{0.52}Sr_{0.48}MnO_{3-\delta}/LaAlO_3$, составляющее величину -14% в магнитном поле H = 8 kOe при температуре T = 225 K, что делает пленки $Nd_{0.5}Sr_{0.5}MnO_{3-\delta}$ перспективными для создания различных оптоэлектронных магнитоуправляемых устройств, например модуляторов ИК-излучения. Высокая величина магнитосопротивления -50% позволяет рекомендовать пленки $Nd_{0.52}Sr_{0.48}MnO_{3-\delta}/LaAlO_3$ для использования в устройствах спинтроники.

Авторы благодарят А.В. Королева за измерения электросопротивления.

Работа поддержана проектом 12-С-2-1026 Программы научного сотрудничества УрОРАН и ДВОРАН, ОФНРАН, грантом РФФИ.

Список литературы

- Loshkareva N.N., Sukhorukov Yu.P., Gizhevsii B.A., Samokhvalov A.A., Arkhipov V.E., Naish V.E., Karabashev S.G., Mukovskii Ya.M. // Phys. Stat. Sol. (a). 1997. V. 164. P. 863.
- [2] Sukhorukov Yu.P., Gan'shina E.A., Belevtsev B.I., Loshkareva N.N., Vinogradov A.N., Rathnayaka K.D.D., Parasiris A., Naugle D.G. // J. Appl. Phys. 2002. V. 91. P. 4403.
- [3] Сухоруков Ю.П., Лошкарева Н.Н., Ганьшина Е.А., Мостовщикова Е.В., Родин И.К., Кауль А.Р., Горбенко О.Ю., Босак А.А., Москвин А.С., Зенков Е.В. // ЖЭТФ. 2003. Т. 123. С. 293.
- [4] Сухоруков Ю.П., Лошкарева Н.Н., Ганьшина Е.А., Кауль А.Р., Горбенко О.Ю., Мостовщикова Е.В., Телегин А.В., Виноградов А.Н., Родин И.К. // ФТТ. 2004. Т. 46. С. 1203.
- [5] Gan'shina E., Loshkareva N., Sukhorukov Yu., Mostovshchikova E., Vinogradov A., Nomerovannaya L. // J. Magn. Magn. Mater. 2006. V. 300. P. 62.
- [6] Сухоруков Ю.П., Лошкарева Н.Н., Телегин А.В., Мостовщикова Е.В., Кузнецов В.Л., Кауль А.Р., Горбенко О.Ю., Ганьшина Е.А., Виноградов А.Н. // Письма в ЖТФ. 2003. Т. 29. В. 21. С.55.
- [7] Sukhorukov Yu.P., Nosov A.P., Loshkareva N.N., Mostovshchikova E.V., Telegin A.V., Favre-Nicolin E., Ranno L. // J. Appl. Phys. 2005. V. 97. P. 103 710.
- [8] Kuwahara H., Tomioka Y., Asamitsu A., Moritomo Y., Tokura Y. // Science. 1995. V. 270. P. 961.
- [9] Qian Q., Tyson T.A., Kao C.-C., Prellier W., Bai J., Biswas A., Greene R.L. // Phys. Rev. B. 2001. V. 63. P. 224424.
- [10] Prokhorov V.G., Kaminsry G.G., Kim J.M., Eon T.W., Park J.S., Lii Y.P., Svetchnikov V.L., Levchenko G.G., Nikolaenko Yu.M., Khokhlov V.A. // Low Temperature Physics. 2011. V. 37. P. 305.
- [11] Moritomo Y., Akimoto T., Nakamura A., Ohoyama K., Ohashi M. // Phys. Rev. B. 1998. V. 58. P. 5544.
- [12] Солин Н.И. // Письма в ЖЭТФ. 2010. Т. 91. С. 6275; ЖЭТФ. 2012. Т. 141. С. 109.
- [13] Mostovshchikova E.V., Bebenin N.G., Loshkareva N.N. // Phys. Rev. B. 2004.
 V. 70. P. 012 406.