05

Мессбауэровские исследования структурных свойств и электрохимических характеристик LiFePO₄

© А.С. Камзин, А.В. Бобыль, Е.М. Ершенко, Е.И. Теруков, Д.В. Агафонов, А.А. Валиуллин

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург Санкт-Петербургский государственный технологический институт (Технологический университет) Казанский (Приволжский) федеральный университет, Казань E-mail: kamzin@mail.ioffe.ru

Поступило в Редакцию 20 марта 2012 г.

С использованием эффекта Мессбауэра на изотопе ⁵⁷ Fe исследованы валентное состояние и локальная координация ионов Fe четырех промышленных образцов и образца, полученного по оригинальной технологии СПбГТИ(ТУ), катодных материалов для перезаряжаемых литиево-ионных батарей. Установлено, что для более 90% ионов железа основным валентным состоянием является Fe²⁺. Величины изомерного сдвига $\delta = 0.96 - 0.98$ mm/s и квадрупольного расщепления $\sigma = 2.88 - 2.93$ mm/s для ионов Fe²⁺ совпадают со значениями для соединений структуры оливина LiFePO₄ и занимают положения в сильно искаженных октаэдрах FeO₆. Ионы Fe³⁺ находятся в октаэдрических и/или тетраэдрических локальных положениях.

В качестве перспективного материала для катодов перезаряжаемых литий-ионных аккумуляторов нового поколения был предложен литированный фосфат железа LiFePO₄ со структурой оливина [1], теоретическая емкость которого высока и составляет 170 mA \cdot h/g, при этом он является экологически безопасным, термически устойчивым в полностью заряженном состоянии [2–4]. Использование дешевого LiFePO₄ вместо дорогого LiCoO₂ уменышило долю стоимости катодного материала в суммарной стоимости аккумулятора с 50 до 10%. Кроме того, LiFePO₄ может работать и в комбинации с традиционным углеродным анодом, и с большим количеством различных композитных анодов [3,4].

57

Анализ публикаций показал, что для достижения высокой эффективности такого катодного материала необходимо умение контролировать или управлять размером частиц, морфологией и взаимодействием между частицами кристалла LiFePO₄. Ионы Fe в таких материалах, полученных обычным методом воздушной закалки расплава, находятся как в Fe^2+ , так и в Fe^3+ валентных состояниях.

Целью данной работы является исследование состояния валентной зоны и локальных координационных состояний ионов Fe в катодных материалах литированного фосфата железа, состоящих из кристаллов LiFePO₄, а также поиск корреляций между структурными, физикохимическими свойствами и аккумуляторными характеристиками (емкость и эффективность) LiFePO₄. Полученные данные позволят более точно варьировать технологию синтеза катодных материалов. Теоретические исследования этих корреляций позволят установить микроскопическую природу и механизмы разрушения структуры электродных материалов, интерфейсов, сотава электролита.

Для исследований были выбраны четыре промышленных катодных материала литированного фосфата железа (LiFePO₄) для перезаряжаемых литиево-ионных батарей и образца LiFePO₄, полученного по оригинальной технологии в СПбГТИ(ТУ) [5,6]. Измерения эффекта Мессбауэра проводились при комнатной температуре на ядрах ⁵⁷ Fe в геометрии пропускания у-квантов через порошки, распыленные на алюминиевую фольгу в диаметре 20 mm. Движение источника γ -излучения ${}^{57}Co(Rd)$ в спектрометре осуществлялось с постоянным ускорением с опорным сигналом в форме треугольника. Калибровка скорости проводилась с использованием фольги α-железа. Полученные месбауэровские спектры были обработаны по методу наименьших квдратов с использованием специальной программы. Для сравнительного анализа образцов были использованы сканирующая электронная микроскопия, микроанализ. Детальные исследования включали комплекс рентгеноструктурных методик, мессбауэровскую спектроскопию, порометрию [5,6]. Параметры исследуемых образцов представлены в табл. 1.

На рис. 1 показаны мессбауэровские спектры, полученные при комнатной температуре. Результаты наилучшего подбора модельного спектра показаны в виде сплошной линии. Из рис. 1 видно, что мессбауэровские спектры состоят из двух дублетов, наложенных друг на друга, и дополнительных линий, указывающих на присутствие другой фазы, не наблюдается. Математическая обработка экспериментальных спектров

Рис. 1. Экспериментальные мессбауэровские спектры исследуемых образцов, полученные при комнатной температуре: *1* — Golden Light, Китай; *2* — P2, Канада; *3* — СПбГТИ(ТУ); *4* — P1, Канада; *5* — ОСЕLL Тесhn Китай. Спектр Fe дан для сравнения.

Проис- хождение LiFePO4	OKP D, nm	a, Å b, Å c, Å	Емкость, mA · h/g	Сопротив- ление макета, <i>R</i> , Ω	Макси- мальный ток, С	Эффек- тивность, %	$d^*,$ cm ² · s ⁻¹
OCELL Techn, Китай	51	10.319; 6.004; 4.694	140	500	2	90	$5.4 \cdot 10^{-10}$
Р1, Канада	43	10.324; 6.004; 4.698	149	408	2.5	92	$3.9 \cdot 10^{-10}$
Р2, Канада	47	10.322; 6.004; 4.697	138	108	10	88	$9.8 \cdot 10^{-10}$
СПбГТИ(ТУ)	62	10.324; 6.004; 4.698	162	102	10	94	$8.4 \cdot 10^{-10}$
Golden Light Китай	76	10.326; 6.008; 4.688	158	700	1.5	92	$1.2 \cdot 10^{-10}$

Таблица 1. Сводная таблица характеристик и параметров исследованных образцов

* *d* — коэффициент диффузии ионов Li.

показала, что образцы являются однофазными. Из экспериментальных спектров с использованием специальной программы были получены величины изомерных сдвигов (δ), квадрупольного расщепления (σ), полуширин линий (Γ), относительных интенсивностей линий поглощения (S), приведенные в табл. 2.

В работах [7,8] (и ссылки там) с использованием эффекта Мессбауэра было изучено валентное состояние и локальное окружение ионов Fe в стеклах фосфата железа и установлено следующее. Ионы Fe²⁺, значения изомерных сдвигов которых δ менее 1 mm/s, связаны с тетраэдрической подрешеткой Fe²⁺, связанным с октаэдрической координацией Fe²⁺ (O_h). Для ионов Fe³⁺, хотя точное координационное число, а именно, Fe³⁺(T_d) и Fe³⁺(O_h), определено из изо-

Образец	Поло- жение	δ , mm/s ± 0.02	σ , mm/s ± 0.02	Γ, mm/s ±0.02	S,% ±0.5
OCELL Techn, Китай	Fe ²⁺	0.983	2.932	0.336	92
	Fe ³⁺	0.306	0.628	0.575	8
Р1, Канада	Fe ²⁺	0.961	2.880	0.342	93
	Fe ³⁺	0.613	1.035	0.468	7
Р2, Канада	Fe ²⁺	0.985	2.973	0.315	95
	Fe ³⁺	0.525	0.874	0.490	5
СПбГТИ(ТУ)	Fe ²⁺	0.981	2.926	0.281	96
	Fe ³⁺	0.218	0.762	0.565	4
Golden Light, Китай	Fe ²⁺	0.982	2.930	0.277	98
	Fe ³⁺	0.200	0.921	0.342	2

Таблица 2. Мессбауэровские параметры, полученные из математической обработки экспериментальных спектров

Здесь δ — изомерный сдвиг, σ — квадрупольное расщепление, Γ — ширина линии поглощения на половине высоты амплитуды и *S* — относительные интенсивности линий поглощения Fe²⁺ и Fe³⁺.

мерного сдвига менее четко, был предложен следующий критерий: Fe³⁺(T_d) < 0.3 ~ 0.4 mm/s < Fe³⁺(O_h). Полученное для ионов Fe²⁺ значение $\delta = 0.98$ mm/s (табл. 2) указывает на координационное состояние Fe²⁺(O_h). Для ионов Fe³⁺ была получена величина изомерного сдвига от 0.2 до 0.6 mm/s. Такие величины δ означают, что ионы Fe³⁺ могут находится как в координационном состоянии Fe³⁺(T_d), так и Fe³⁺(O_h). Значение $\delta = 0.20$ mm/s для ионов Fe³⁺ свидетельствует о присутствии в образце тетраэдрической координации Fe³⁺(T_d). Следовательно, основной валентностью ионов Fe в исследуемых образцах является Fe²⁺ (более 90%).

Из табл. 2 видно, что полученные значения δ и σ аналогичны величинам, определенным из мессбауэровских исследований кристаллов LiFePO₄ со структурой оливина (см. [8,9] и ссылки там). Это означает, что при кристаллизации литированных фосфатов железа преимущественно формируются кристаллов LiFePO₄. Можно предположить, что после формирования кристаллов LiFePO₄ образуется кристаллическое состояние Li₃Fe₂(PO₄)₃. Следует отметить, что железо в Li₃Fe₂(PO₄)₃ является трехвалентным Fe³⁺. Можно предположить, что механизм

формирования катодного материала на основе литированного фосфата железа может быть следующим. Во-первых, образуются кристаллы LiFePO₄ с большим количеством ионов Fe²⁺, а затем осаждаются кристаллы Li₃Fe₂(PO₄)₃. Термическая обработка при высокой температуре ускоряет процесс и, следовательно, для подавления окисления ионов Fe²⁺ в Fe³⁺ необходима восстановительная атмосфера.

Ширины линии ионов Fe²⁺ уменьшаются от 0.342 до 0.277 mm/s (табл. 2), указывая, что степень случайности распределения ионов Fe²⁺ по положениям уменьшается в связи с образованием кристаллов LiFePO₄. С другой стороны, ширины линий ионов Fe³⁺ увеличиваются, что означает наличие различных локальных координационных окружений, таких как Fe³⁺ в оставшейся стекловидной фазе, наличие переходного слоя между стекловидной фазой и кристаллами LiFePO₄ и внедрений в кристаллы LiFePO₄.

На рис. 2 представлены данные рентгеновских дифракционных исследований порошков LiFePO₄, LiFePO₄/C ([10-12] и ссылки там), а также данные из табл. 1. Максимальный усредненный размер кристаллита, определяемый по ширине рефлекса как размер области когерентного рассеяния (OKP), равен $D = 243 \,\mathrm{nm}$ (крайняя точка по оси абсцисс) [13]. Полученные в [14] параметры решетки a = 10.322 Å, b = 6.013 Å, и c = 4.695 Å, видимо, можно принимать за значения, наиболее близкие к параметрам решетки объемных монокристаллических образцов. Если использовать значение a = 10.332 Å как величину этого параметра в ненапряженной решетке LiFePO₄, то из рис. 2 видно, что исследованные соединения деформированы сжатием. Полученная из данных табл. 1 величина деформации сжатия достигает значений $\varepsilon = \Delta a / a = (1.3 - 0.6) \cdot 10^{-2}$. Следует заметить, что эти величины, также как и положение сплошных линий на рис. 2, являются предельными, максимально возможными. Это связано с тем, что, во-первых, в расчетах размера области когерентности по ширине рентгеновских рефлексов, как правило, не учитывая вклад от микроскопических деформаций кристаллитов $\langle \varepsilon \rangle = \{ \langle (\Delta a/a)^2 \rangle \}^{1/2}$ [14]. Во-вторых, уменышение параметра решетки может быть связано с частичным уменьшением количества лития относительно равновесного состояния и формированием смешанного твердого раствора Li_xFePO₄ для кристаллитов размером D < 50 nm либо с фазовой неоднородностью кристаллитов и наличием границы между фазами xLiFePO₄ и (1-x)FePO₄ для больших частиц [15]. При построении рис. 2 ординатой были выбраны

Рис. 2. Зависимость величины параметра решетки *а* от размера кристаллита, определяемого как размер области когерентного рассеяния рентгеновского излучения. Сплошные кривые ограничивают область возможных значений параметра решетки и размера кристаллитов. Пунктирная прямая отмечает на оси ординат значение параметра решетки *a* 10.332 A, полученное в [10]. *1* — данные для LiFePO₄ из литературы; *2* — из табл. 1; *3* — данные для LiFePO₄/C из литературы.

значения параметров решетки по оси a потому, что наблюдаемый разброс данных вдоль осей b и c в 2–3 раза меньше по сравнению с приведенными на рис. 2. Это указывает на высокую чувствительность именно параметра a к различным технологическим отклонениям от стехиометрического состава либо от равновесного, характерного для объемных монокристаллов.

На рис. 3 приведены результаты мессбауэровских исследований исходных порошков LiFePO₄, взятые из литературы и полученные в данной работе. Сплошная прямая линия описывает зависимость параметра решетки от состава $\text{Li}_x \text{Fe}_x^{2+} \text{Fe}_{1-x}^{3+} \text{PO}_4$ согласно линейному

Рис. 3. Зависимость величины параметра решетки *a* от атомного содержания железа в зарядовом состоянии Fe^{3+} . *1* — данные для LiFePO₄ из литературы; *2* — данные из табл. 1.

закону (типа Веггарда)

$$a = (9.87 + x \cdot 0.462) \text{ Å}$$

здесь для параметров решеток вдоль оси a решеток LiFePO₄ и FePO₄ использованы приведенные выше значения и полученные в [16] (a = 9.87, b = 5.83 и c = 4.82 Å) соответственно.

Таким образом, исследовано валентное состояние и локальная координация ионов Fe и установлено, что основным валентным состоянием ионов железа в промышленных и разработанном в СПбГТИ(ТУ) образцах LiFePO₄ является Fe²⁺. Содержание Fe³⁺ в образцах много больше величины (рис. 3), обусловленной за счет уменьшения содержания Li в исходных равновесных составах LiFePO₄. Значения изомерных сдвигов и квадрупольных расщеплений соответствуют величинам для Fe²⁺, занимающим положения в кристаллах LiFePO₄ в сильно искаженных

октаэдрах FeO₆. Установлена зависимость (см. табл. 1) между концентрацией ионов Fe³⁺ и аккумуляторными характеристиками, а именно, увеличение количества Fe³⁺ в исходном сырье приводит к уменьшению емкости и эффективности аккумулятора.

Работа выполнена при поддержке Госконтрактами 16.526.12.6017 и 16.526.11.6053.

Список литературы

- [1] Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. // J. Electronchem. Soc. 1997. V. 144. P. 1188.
- [2] Косова Н.В. // Междунар. конференция "Фундаментальные проблемы преобразования энергии в литиевых электрохимических системах". Сентябрь 2010 г. Россия, Новочеркасск. С. 20.
- [3] Goodenough J.B., Kim Y. // Power Sources. 2010. V. 195. P. 4957-4962.
- [4] Churikova A.V., Ivanishchev A.V., Ivanishcheva I.A., Sycheva V.O., Khasanova N.R., Antipov E.V. // Electrochimica Acta. 2010. V. 55. P. 2939.
- [5] Быстров Ю.А., Кудрявцев Е.Н., Кирьянов Б.В. и др. // Изв. СПбГТИ(ТУ). 2010. № 7. С. 3–8.
- [6] Бобыль А.В., Жданов В.В., Румянцев А.М. // Матералы VIII Междунар. конф. "Фундаментальные проблемы электрохимической энергетики". Россия, Саратов, 3–7 октября 2011 г. С. 8.
- [7] Hirosea K., Honmaa T., Doib Y., Komatsua T. // Solid State Communications. 2008. V. 146. P. 273.
- [8] Prince A.A.M., Mylswamy S., Chan T.S., Liu R.S., Hannoyer B., Jean M., Shen C.H., Huang S.M., Lee J.F., Wang G.X. // Solid State Communications. 2004. V. 132. P. 455.
- [9] Yamada A., Chung S.C., Hinokuma K. // J. Electrochem. Soc. 2001. V. 148. P. A224.
- [10] Goodenough John B., Padhi Akshaya K., Nanjundaswamy K.S. et al. Cathode materials for secondary (rechargeable) Li batteries / Patent N US 5910382, published on 08-Jun-1999.
- [11] Armand Michel, Goodenough John B., Padhi Akshaya K. et al. Cathode materials for secondary (rechargeable) Li batteries / Patent N US 6514640, published on 02-Apr-2003.
- [12] Kohzaki Massao, Takeuchi Youji, Ukyo Yoshio. Carbon-containing lithium-iron composite phosphorus oxide for lithium secondary battry positive electrode active material and process for producing the same / Patent N US 7025907, published on 11-Apr-2006.
- 5 Письма в ЖТФ, 2012, том 38, вып. 15

- [13] Dong-Han Kim, Jaekook Kim // J. Phys. Chem. Solids. 2007. V. 68. P. 734.
- [14] Bobyl A.V., Gaevskii M.E., Karmanenko S.F., Kutt R.N., Suris R.A., Khrebtov I.A., Tkachenko A.D., Morosov A.I.// J. Appl. Phys. 1997. V. 82. N 3. P. 1274.
- [15] Ramana C.V., Mauger A., Gendron F., Julien C.M., Zaghib K. // J. Power Sources. 2009. V. 187. P. 555.
- [16] Jacob L. Jones, Jui-Ting Hung, Ying S. Meng. // J. Power Sources. 2009. V. 189. P. 702.