04

Зависимость времени удержания энергии от величины тороидального магнитного поля в токамаке ТУМАН-3М

© С.В. Лебедев, Л.Г. Аскинази, М.И. Вильджюнас, Н.А. Жубр, В.А. Корнев, С.В. Крикунов, А.С. Тукачинский

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: sergei.lebedev@mail.ioffe.ru

Поступило в Редакцию 25 ноября 2011 г.

Представлены результаты исследования влияния величины тороидального магнитного поля на время удержания энергии в омическом *H*-режиме в токамаке с малым магнитным полем ТУМАН-3М. Исследование выполнено при тороидальных полях 0.68–1.0 Т, вдвое превышающих поля, исследовавшиеся в сходных экспериментах на сферических токамаках NSTX и MAST (0.25–0.5 T). Полученные данные указывают на сильную зависимость времени удержания энергии от тороидального поля: $\tau_E \propto B_T^{(0.75-0.8)}$. Найденная зависимость существенно более сильная, чем в скейлинге ИТЭР: $\tau_{E_{\perp}IPB98} \propto B_T^{0.15}$, и несколько слабее, чем наблюдавшаяся на токамаках NSTX и MAST. Более сильная по сравнению со скейлингом ИТЭР зависимость τ_E от B_T , обнаруженная в описываемых экспериментах, должна учитываться при разработке проектов термоядерных установок с малыми аспектным отношением и тороидальным магнитным полем, в частности при проектировании термоядерного источника нейтронов.

Зависимость времени удержания энергии τ_E от тороидального магнитного поля B_T в токамаках с традиционными геометрией и диапазоном B_T хорошо исследована в рамках работ по определению параметров реактора ИТЭР [1]. В *H*-режиме эта зависимость слабая и выражается следующим соотношением: $\tau_{E_IPB98} \propto B_T^{0.15}$ (см. скейлинг IPB98 (у,2) в [1]). Возросший в последнее время интерес к альтернативным термоядерным устройствам на основе концепции токамака, имеющим целью реализацию ускоренного пути создания энергетической станции [2–4], мотивировал изучение зависимости τ_E от B_T при меньших аспектных отношениях и магнитных полях. Исследования на токамаках NSTX [5] и MAST [6] при относительно

40

Рис. 1. Тороидальное магнитное поле B_T , плазменный ток I_p и запас устойчивости $q^{cyl}(a)$ в разрядах до (прерывистые линии) и после (непрерывные линии) модернизации схемы питания ОТП.

низких магнитных полях ($B_T < 0.5 \,\mathrm{T}$) показали более сильную зависимость от B_T : $\tau_E \propto B_T^{(0.9-1.4)}$, чем предполагает скейлинг IPB98 (у,2). Помимо практической важности исследования зависимости времени удержания от магнитного поля существует фундаментальный интерес к этой проблеме, обусловленный существенным влиянием электронного переноса тепла на время удержания при малых полях и аспектных отношениях. Аномальный электронный перенос является одной из ключевых проблем физики нагрева плазмы в установках с магнитным удержанием. Есть основания полагать, что изучение закономерностей электронного переноса в широком диапазоне параметров будет способствовать пониманию физики наблюдаемой аномальности переноса. Описываемые в настоящем письме эксперименты были выполнены в лимитерном токамаке с круговым сечением ТУМАН-3М [7] при большем, чем в [5] и [6], тороидальном магнитном поле 0.68–1.0 Т.

Недавно осуществленная модернизация системы питания токамака ТУМАН-3М [8] позволила увеличить максимальное тороидальное маг-

нитное поле в стадии плато тока от 0.68 до 1.0 Т. В первом окне на рис. 1 прерывистой и сплошной линиями показаны временные зависимости тороидального магнитного поля до и после модернизации системы питания соответственно. В этих условиях изучалось влияние B_T на τ_E и электронную температуру T_e в плазме. При увеличении тороидального поля был расширен также диапазон доступных плазменных токов I_p от 140 до 190 kA. Временные зависимости тока плазмы и коэффициента запаса устойчивости на лимитере q^{cyl} (а), рассчитанного в цилиндрическом приближении, представлены во втором и третьем окнах на рис. 1 при разных величинах B_T . Таким образом, появилась возможность помимо влияния B_T исследовать влияние I_p на время удержания энергии и электронную температуру.

Параметры плазмы в описываемых экспериментах находились в следующих пределах: большой и малый радиусы $R_0 = 0.53$ m и a = 0.22 m соответственно, $B_T = 0.68 - 1.0$ T, $I_p = 140 - 190$ kA, средняя концентрация $\overline{n} = (2-5) \cdot 10^{19}$ m⁻³, $T_e(0) = 0.4 - 0.9$ keV, ионная температура на оси разряда $T_i(0) = 0.15 - 0.2$ keV, рабочий газ — дейтерий. Все эксперименты осуществлялись в режиме омической *H*-моды, ранее детально изучавшейся в ТУМАНе-3М при полях $B_T \leq 0.68$ T [9]. Электронная температура измерялась с помощью набора детекторов мягкого рентгеновского излучения, снабженных бериллиевыми фольгами. Ионная температура определялась по спектрам нейтральных атомов перезарядки (NPA). Запасенная в плазме энергия W_{dia} измерялась с помощью диамагнитных петель. Вкладываемая в плазму мощность нагрева рассчитывалась по измеряемым напряжению и плазменному току.

Для целей настоящего исследования были выбраны три группы разрядов, отличавшихся или магнитным полем, или током: 1) $B_T = 0.68$ T, $I_p = 140$ kA; 2) $B_T = 1.0$ T, $I_p = 140$ kA; 3) $B_T = 1.0$ T, $I_p = 170$ kA. Сопоставление параметров разрядов из 1 и 2 групп было использовано для анализа зависимости $\tau_E(B_T)$, а сопоставление 2 и 3 групп — для анализа зависимости $\tau_E(I_p)$. В этих трех сценариях разрядов были осуществлены измерения центральной электронной температуры $T_e(0)$ и энергосодержания плазмы W_{dia} . Во избежание влияния концентрации плазмы эволюция \overline{n}_e была подобрана одинаковой во всех трех сценариях. На рис. 2 представлено временное поведение различных параметров плазмы в характерных разрядах из трех групп. В первых трех окнах приведены описанные выше B_T , I_p и \overline{n}_e в разрядах из

Рис. 2. Тороидальное магнитное поле B_T , плазменный ток I_p , средняя плотность \overline{n}_e , температура электронов в центре $T_e(0)$ и запасенная энергия W_{dia} в разрядах с $B_1 = 0.68$ Т, $I_p = 140$ kA — пунктирные линии, $B_T = 1.0$ Т, $I_p = 140$ kA — прерывистые линии, $B_T = 1.0$ Т, $I_p = 170$ kA — непрерывные линии.

групп 1, 2 и 3. Измерения электронной температуры, выполненные в разрядах с различными магнитными полями, показали увеличение $T_e(0)$ от 400–500 до 550–600 eV при увеличении B_T от 0.68 до 1.0 T (см. 4-е окно на рис. 2, прерывистая и непрерывная линии). В предположениях подобия форм радиальных распределений $T_e(r)$ и неизменности $T_i(r)$ при увеличении B_T было рассчитано увеличение времени удержания. Отметим, что неизменность $T_i(0)$ была подтверждена измерениями с помощью NPA диагностики. Полагая, что все изменение τ_E обусловлено изменением B_T , была найдена степенная зависимость $\tau_E(B_T)$, соответствующая наблюдаемому увеличению $T_e(0)$. Она оказалась

$$\tau_E \propto B_T^{0.75}.\tag{1}$$

Сопоставление параметров разрядов из групп 2 и 3 (сценарии с одинаковыми B_T и различными I_p) позволило аналогичным вышеописанному образом получить зависимость $\tau_E(I_p)$. Как видно на рис. 2 (4-е окно, прерывистая и непрерывная линии), увеличение I_p от 140 до 170 kA при неизменном $B_T = 1.0$ T привело к дальнейшему росту $T_e(0)$ от 550–600 до 650–750 eV. Соответствующая такому приросту $T_e(0)$ степенная зависимость $\tau_E(I_p)$ оказалась

$$\tau_E \propto I_p^{0.95}.$$
 (2)

В наших экспериментах был использован и другой, независимый метод исследования зависимости времени удержания энергии от тороидального магнитного поля и плазменного тока — измерение τ_E с использованием данных об энергосодержании плазмы, полученных с помощью диамагнитных петель W_{dia} . Следует отметить, что точность диамагнитных измерений в описываемых режимах не очень высока — около 10%, что обусловлено недостаточной точностью измерительной схемы и малой величиной бета-полоидального (отношение газокинетического давления плазмы к давлению магнитного поля) тока: $\beta_p = \int_{s} p(r) ds / (\mu_0 I_p^2 / 8\pi) = 0.2 - 0.4$. Измерения показали, что прирост

 W_{dia} при увеличении B_T невелик (см. 5-е окно на рис. 2, пунктирная и прерывистая линии), однако заметным оказалось уменьшение вкладываемой мощности, очевидно, обусловленное ростом температуры электронов, приводящим к росту проводимости и снижению напряжения на обходе плазмы. Эффект уменьшения вкладываемой мощности при увеличении B_T привел к выводу о сильной зависимости $\tau_E(B_T)$. Расчеты показали:

$$\tau_E \propto B_T^{0.8},\tag{3}$$

что близко к зависимости, полученной на основе измерений электронной температуры, см. формулу (1).

В сценариях с одинаковыми B_T наблюдался явный прирост W_{dia} при увеличении I_p от 140 до 170 kA (см. 5-е окно на рис. 2, прерывистая и непрерывная линии). Эти данные были использованы для получения зависимости $\tau_E(I_p)$, которая оказалась близкой к определенной по измерениям электронной температуры, см. формулу (2):

$$\tau_E \propto I_p^{0.95}.\tag{4}$$

Рис. 3. Экспериментальное время удержания энергии $\tau_{E_{EXP}}$ как функция скейлинга IPB98 (у,2) [1] в двух сценариях омической *H*-моды: ромбы (\diamondsuit) — $B_T = 0.68$ T, $I_p = 140$ kA (прерывистая прямая — линейная аппроксимация); кружки (•) — $B_T = 1.0$ T, $I_p = 170$ kA (непрерывная прямая — линейная аппроксимация). Типичная ошибка определения $\tau_{E_{EXP}} - 12\%$.

По результатам диамагнитных измерений в более широком диапазоне концентраций плазмы было осуществлено сравнение экспериментально измеренных времен удержания энергии τ_{E_EXP} с рассчитанными по скейлингу IPB98 (у,2) τ_{E_IPB98} . Сравнение выполнено для двух сценариев работы токамака: один с малыми полем и током по плазме ($B_T = 0.68$ T, $I_p = 140$ kA) и второй — с большими полем и

током ($B_T = 1.0$ Т, $I_p = 170$ kA). Экспериментальное двермя удержания энергии в первом сценарии оказалось заметно ниже, чем во втором: 4–7 ms в сравнении с 7–13 ms. Отличаются и отношения τ_{E_EXP} к τ_{E_IPB98} . Причем следует отметить, что $\tau_{E_EXP}/\tau_{E_IPB98}$ близко к единице только в случае больших B_T и I_p , тогда как при малых B_T и I_p отношение $\tau_{E_EXP}/\tau_{E_IPB98}$ в среднем составляет 0.73. Сказанное выше проиллюстрировано на рис. 3, на котором точки, соответствующие каждому разряду, представлены на графике с осями τ_{E_IPB98} и τ_{E_EXP} . Если воспользоваться подтвержденной двумя независимыми измерениями зависимостью $\tau_E \propto I_p^{0.95}$ (см формулы (2) и (4)), то по обнаруженному различию $\tau_{E_EXP}/\tau_{E_IPB98}$ также можно определить зависимость $\tau_E(B_T)$. Определенная таким образом степенная зависимость совпала с найденной по диамагнитным измерениями при неизменном токе и одинаковой концентрации, см. формулу (3).

Таким образом, в результате осуществленного исследования времени удержания энергии в режиме омической *H*-моды в диапазоне полей 0.68–1.0 Т обнаружено, что зависимость $\tau_E(B_T)$ может быть выражена следующим степенным законом: $\tau_E \propto B_T^{(0.75-0.8)}$. Найдена зависимость заметно сильнее, чем в скейлинге IPB98 (у,2): $\tau_{E_IPB98} \propto B_T^{0.15}$. Причем отклонения от скейлинга IPB98 (у,2) наиболее заметны при малых B_T . Этот факт может быть интерпретирован как ухудшение удержания при снижении магнитного поля в токамаке ниже величины ~ 1 Т. Это наблюдение подтверждается результатами экспериментов на токамаках NSTX [5] и MAST [6], в которых при еще меньших полях наблюдалась еще более сильная зависимость $\tau_E(B_T)$: при $B_T = 0.25 - 0.5 T \tau_E \propto B_T^{(0.9-1.4)}$. Полученный результат, по-видимому, следует учитывать при проектировании термоядерных установок с малыми магнитными полями. Помимо зависимости τ_E от магнитного поля была получена зависимость $\tau_E(I_p) : \tau_E \propto I_p^{0.95}$. Она оказалась близкой к зависимости в скейлинге IPB98 (у,2): $\tau_E \propto I_p^{0.93}$.

Отметим, что в более ранних экспериментах на токамаке ТУ-МАН-3 [10] были обнаруждены режимы с удержанием, несколько лучшим, чем в настоящем исследовании. Отличие экспериментов [10] от рассматриваемых в настоящем сообщении состоит в проведении процедуры "боронизации" стенок разрядной камеры, которая оказывала дополнительное благоприятное воздействие на характеристики разрядов. При проведении описанных здесь экспериментов "боронизация" не использовалась.

Работа поддержаивалась Российской академией наук (программа президиума РАН № 30), Министерством науки и образования РФ (контракт № 16.518.11.7017 и договор № 11.G34.31.0041) и Российским фондом фундаментальных исследований (грант № 10-02-01414-а).

Список литературы

- ITER Phys. Expert Groups on Conf. and Transp. and Conf. Mod. and Database, ITER Physics Basis Editors // Nucl. Fusion. 1999. V. 39. P. 2175–2249.
- [2] Peng Y.-K.M., Fogarty P.J., Burgess T.W. et al. // Plasma Phys. Control. Fusion. 2005. V. 47. P. B263–283.
- [3] Voss G., Davisa S., Dnestrovskij A. et al. // Fusion Eng. & Des. 2008. V. 83.
 P. 1648–1653.
- [4] *Kuteev B.V., Azizov E.A., Bykov A.S.* et al. // Nucl. Fusion. 2011. V. 51. P. 073013 (6 p.).
- [5] Kaye S.M., Bell M.G., Bell R.E. et al. // Nucl. Fusion. 2006. V. 46 P. 848-857.
- [6] Valovic M., Akers R., Cunningham G. et al. // Nucl. Fusion. 2009. V. 49. P. 075016 (8 p.).
- [7] Воробьев Г.М., Голант В.Е., Горностаев С.В. и др. // Физика плазмы. 1983.
 Т. 9. С. 105–120.
- [8] Аскинази Л.Г., Жубр Н.А., Корнев В.А., Лебедев С.В., Разуменко Д.В., Тукачинский А.С. // Приборы и техника эксперимента. 2011. В. 6. С. 66–70.
- [9] Lebedev S.V., Andrejko M.V., Askinazi L.G. et al. // Plasma Phys. Control. Fusion. 1996. V. 38. P. 1103–1116.
- [10] Андрейко М.В., Аскинази Л.Г., Голант В.Е., Корнев В.А., Лебедев С.В., Левин Л.С., Раздобарин Г.Т., Рождественский В.В., Тукачинский А.С., Ярошевич С.П. // Письма в ЖЭТФ. 1994. Т. 59. В. 2. С. 94–97.