01;11

О концентрационных зависимостях заряда атомов, адсорбированных на однолистном графене

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург E-mail: Sergei_Davydov@mail.ru

Поступило в Редакцию 4 ноября 2011 г.

С учетом диполь-дипольного отталкивания предложены простые схемы расчета зависимостей заряда адатомов Z_a от степени покрытия ими листа графена. Рассмотрены случаи адсорбции щелочных металлов и атомарного водорода. Показано, что с ростом покрытия происходит уменьшение заряда адатомов, причем это относится как к зонному, так и к локальному вкладам в величину заряда.

Среди разнообразных уникальных и привлекательных свойств однолистного графена [1,2] его адсорбционная способность начала привлекать повышенное внимание исследователей сравнительно недавно (см. соответствующие ссылки в работах [3,4]). При этом большинство исследований являются теоретическими расчетами, основанными на методе функционала плотности. В работе [3] была предложена простая модель плотности состояний однолистного графена (М-модель), позволившая найти аналитическое выражение для локальной плотности состояний одноэлектронного адатома и определить его число заполнения n_a и тем самым заряд Z_a . Впоследствии в рамках М-модели были рассчитаны заряды адатомов водорода, щелочных металлов и галогенов [4].

Все упомянутые расчеты относились к адсорбции одиночного (изолированного) атома. При конечных степенях покрытия Θ между адатомами возникают как обменные взаимодействия (прямое и косвенное), так и диполь-дипольное отталкивание [5]. Влияние последнего легко учесть (см., например, [6]), заменив энергию квазиуровня изолированного адатома ε_a на зависящую от степени покрытия величину $\tilde{\varepsilon}_a(\Theta) = \varepsilon_a - \xi \Theta^{3/2} Z_a(\Theta)$, где константа дипольного взаимодействия $\xi = 2e^2 l^2 N_{ML}^{3/2} \overline{A}$ (l — длина адсорбционной связи, N_{ML} — концентрация адатомов в монослое, $\overline{A} \sim 10$ — коэффициент, слабо зависящий

41

от геометрии адсорбированного слоя).¹ При этом нахождение чисел заполнения $n_a(\Theta)$ и зарядов $Z_a(\Theta)$ становится самосогласованной задачей [6]. В случае адсорбции на графене, даже при использовании приближенных аналитических выражений для числа заполнения, мы имеем достаточно сложную задачу, тем более, если учесть, что число заполнения $n_a(\Theta)$ является суммой зонной $n_b(\Theta)$ и локальной $n_l(\Theta)$ составляющих (см. [3]). Если наряду с упомянутыми трудностями принять во внимание, что какая-либо экспериментальная информация по зависимостям $n_a(\Theta)$ и $Z_a(\Theta)$ отсутствует, представляется уместным подойти к задаче упрощенно.

Простейшей моделью, служащей для описания адсорбции, является модель Андерсона—Ньюнса [6,7], в рамках которой (в приближении бесконечно широкой зоны для немагнитного случая [8]) число заполнения адатома вычисляется как

$$n_a(\Theta) = \frac{2}{\pi} \operatorname{arcctg} \frac{\tilde{\varepsilon}_a(\Theta)}{\Gamma},\tag{1}$$

где Г — полуширина квазиуровня адатома, а энергия квазиуровня $\tilde{\varepsilon}_a(\Theta)$ отсчитывается от уровня Ферми системы. В этой модели локальные состояния отсутствуют, так что ее можно использовать только в случае, когда $n_l \ll n_b \approx n_a$. Именно так обстоит дело при адсорбции атомов щелочных металлов (AM) на однолистном графене (G) [4]. Попытаемся совместить результаты, полученные для адсорбционной системы AM/G в рамках М-модели [3,4], с моделью Андерсона—Ньюнса [6–8].

Прежде всего, напомним, что числу заполнения (1) отвечает плотность состояний

$$\tilde{\rho}_a(\Theta) = \frac{2}{\pi} \frac{\Gamma}{(\omega - \tilde{\varepsilon}_a(\Theta))^2 + \Gamma^2},$$
(2)

где ω — энергетическая переменная. Сравнивая выражение для плотности состояний адатома в М-модели (см. (9) в [3]) с выражением (2) при $\Theta = 0$, положим $\tilde{\varepsilon}_a(0) = \varepsilon_a + \Lambda(\omega^*)$, где $\Lambda(\omega)$ — функция сдвига квазиуровня адатома, приведенная в [3], а ω^* является корнем уравнения

$$\omega - \varepsilon_a - \Lambda(\omega) = 0 \tag{3}$$

и отвечает положению главного максимума плотности состояний адатома в М-модели. Тогда выражение (1) при $\Theta = 0$ можно представить

¹ В случае адсорбции на графене в качестве зеркальной плоскости отражения выступает графеновый лист, на поверхности которого в виде определенной решетки расположены заряды $Z_a(\Theta)$, образующие вместе со своими отражениями диполи с плечом 2*l*. С ростом Θ происходит всестороннее сжатие этой решетки.

в виде

$$n_a \equiv n_a(0) = \frac{2}{\pi} \operatorname{arcctg} \frac{\omega^*}{\Gamma}.$$
 (4)

Для того чтобы определить параметр Г, входящий в выражения (4) и (5), подставим в выражение (4) значение n_a , вычисленное в рамках М-модели [4]. Тогда, считая n_a известным, получим $\Gamma = \omega^*/\operatorname{tg}(\pi Z_a/2)$, где $Z_a = 1 - n_a$. В дальнейшем перейдем к безразмерным величинам, приняв за единицу энергии полуширину "псевдощели" $\Delta/2 = 2.38 \text{ eV}$ [3], так что $x = 2\omega/\Delta$, $x^* = 2\omega^*/\Delta$, $\eta_a = 2\varepsilon_a/\Delta$, $\overline{\Gamma} = 2\Gamma/\Delta$, $\overline{\xi} = 2\xi/\Delta$, $\gamma\lambda(x) = 2\Lambda/\Lambda$, где $\gamma = [8/(1 + 2\ln 3)](V/\Delta)^2$, V матричный элемент взаимодействия адатом-подложка (см. подробнее [3,4]).

Обращаясь к параметрам М-модели и результатам вычислений для системы АМ/G [4], нетрудно видеть, что как параметры задачи, так и значения n_a не слишком сильно меняются в ряду Li \rightarrow Cs. Так как в данной работе мы преследуем скорее иллюстративные цели, введем "средний" щелочной атом, для которого, как нетрудно показать, $\overline{\Gamma} \sim 0.5$ и $\omega^* \sim -3$. Последнее соотношение означает, что главный резонанс в плотности состояний адатома расположен вблизи нижнего края сплошного спектра графена (см. [3]). Принимая во вниаание результаты работы [7], где рассматривалась адсорбция АМ на графите (см. также [9,10]), положим $\overline{\xi} \sim 5$. Результаты расчета $Z_a(\Theta)$ представлены на рисунке. Как обычно, наблюдается деполяризация адатома с ростом степени покрытия.

Насколько известно автору, существует лишь одна работа [11], где изучаются зависимости характеристик системы AM/G от степени покрытия. Сравнение показывает общее качественное согласие в зависимости заряда адатома от степени покрытия.

Необходимо отметить одно обстоятельство, которое, в принципе, может оказаться существенным. При проведении настоящего расчета мы не учитывали изменения уровня Ферми системы, полагая, что, как и при нулевых покрытиях, этот уровнь совпадает с точкой Дирака графена. Покажем, что в данном случае такое приближение допустимо.

Число электронов в системе равно $N_g + N_a$, где $N_{g(a)}$ есть число атомов графена (адатомов). С другой стороны, в силу сохранения электронов в системе это же число электронов должно быть равно $N_g n_g + N_a n_a$, где n_g — среднее число заполнения атома графена. Отсюда $Z_g(\Theta) = -\eta \Theta Z_a(\Theta)$, где $Z_g = 1 - n_g$, $\Theta = N_a/N_{ML}$ (N_{ML} —

Зависимость заряда "усредненного" адатома щелочного металла $Z_a(\Theta)$ и заряда $Z_g(\Theta)$, приходящегося на один атом графена, от степени покрытия поверхности графена адатомами Θ .

число адатомов в монослое), $\eta = N_{ML}/N_g$. Переходя к расчету на единицу площади, получим $\eta = (d_g/d_a)^2$, где $d_g = 1.42$ Å — расстояние между ближайшими соседями (б.с) в графене, d_a — расстояние между б.с. в объемном щелочном металле (см. обоснование такой оценки в работах [7,9,10]). Хотя значения d_a в ряду Li \rightarrow Cs различаются довольно значительно (см., например, [12]), вновь примем среднее значение отношения $\eta \sim 0.1$. Вычисленные значения Z_g представлены на рисунке. Как следует из рисунка, заряд атома углерода графена не превышает 0.1, а его число заполнения менее 1.1. Следовательно, с ошибкой, не превосхоядщей 10%, изменение уровня Ферми системы можно игнорировать.

Отметим еще один момент: заряды AM, адсорбированных на графите, полученные в [7,9,10], в разы меньше, чем вычисленные нами в [4] для графена. Дело, по-видимому, в том, что в работах [7,9,10] мы изначально брали "плохую" модель подложки (модель Андерсона—Ньюнса), но подгоняли параметры задачи под экспериментальные данные по зависимости работы выхода системы от степени

покрытия, тогда как в [4] модель подложки была вполне адекватна, но какие-либо экспериментальные данные отсутствовали. Так или иначе, для вынесения окончательного решения о величине зарядов необходимы экспериментальные данные по системам AM/G. Отметим, однако, что во всех случаях зависимости $Z_a(\Theta)$ качественно совпадают.

Рассмотрим теперь случай адсорбции атомарного водорода, для которого, в отличие от AM, основную роль играют локальные состояния, так как $n_b \ll n_l \approx n_a$ [4]. На этом основании в работе [13] для описания системы H/G была предложена модель поверхностной молекулы, в рамках которой уравнение (3) для одиночного атома в первом приближении принимает вид $\omega - \varepsilon_a - (2V^2/\omega) = 0$, откуда

$$\omega_{a,b} \approx \frac{1}{2} \varepsilon_a \pm R, \qquad R = \left(\frac{\varepsilon_a^2}{4} + 2V^2\right)^{1/2},$$
(5)

где индексы *а* и *b* обозначают антисвязывающее и связывающее состояния поверхностной молекулы, которым в формуле (9) отвечают знаки + и – соответственно². Такое решение может реализоваться при условии, что $|\varepsilon_a| \gg D/2$ и/или $|V| \gg D/2$, где $D/2 = 3\Delta/2$ — ширина π и π^* зон графена [3]. Второе из этих неравенств как раз и отвечает случаю поверхностной молекулы. Переходя к конечным концентрациям адатомов, вновь заменим ε_a на $\tilde{\varepsilon}_a(\Theta) = \varepsilon_a - \xi \Theta^{3/2} Z_a(\Theta)$, где теперь $Z_a = 1 - n_l$. Учитывая, что число заполнения n_l локального уровня ω_l определяется как $n_l = |1 - d\Lambda/d\omega|_{\omega_l}^{-1}$ (см. [3,13]), получим уравнение

$$Z_l(\Theta) = \frac{2V^2}{\omega_h^2 + 2V^2}.$$
(6)

Положим $\varepsilon_a = -6 \,\mathrm{eV}$, $V \sim 10 \,\mathrm{eV}$ (это средние значения по данным работ [4,11]) и $\xi \sim 100 \,\mathrm{eV}$ (считалось, что $N_{ML} = S^{-1}$, где $S = 3\sqrt{3}d_g^2/2$ — площадь, приходящаяся на один атом углерода, $l = 1.2 \,\mathrm{\AA}$ [4]). Так как $2V^2 \gg \varepsilon_a^2/4$, предположим, что то же неравенство имеет место и в общем случае, когда ε_a переходит в $\tilde{\varepsilon}_a(\Theta)$. Тогда получим в первом приближении

$$Z_l(\Theta) \approx \frac{Z_l(0)}{1 + \Theta^{3/2}(\xi/V)},\tag{7}$$

где $Z_l(0) \approx (1 + \varepsilon_a/2\sqrt{2}V)/2$, что в рассматриваемом случае дает $Z_l(0) \approx 0.39$. Здесь, однако, следует рассматривать только интервал

 $^{^2}$ В третьем члене выражения (8) и в формуле (9) работы [13] пропущен множитель 2, который должен стоять перед $V^2.$

покрытий от 0 до $\Theta = 0.5$. При $\Theta = 1$ возникает новая система — графан, где атомы водорода прикрепляются, чередуясь, к обеим сторонам графенового листа [14]. Система же, отвечающая односторонней адсорбции при $\Theta = 0.5$, именуется графон [15].

Таким образом, в случае адсорбции водорода с ростом Θ заряд адатомов понижается, т.е. имеет место деполяризация, как и при адсорбции щелочных металлов. Следует подчеркнуть, что деполяризация есть результат не только дипольных взаимодействий, но и обменов, как прямого, так и косвенного.

Работа выполнена в рамках программы президиума РАН "Квантовая физика конденсированных сред", ОФН РАН "Новые материалы" и программы президиума РАН "Основы фундаментальных исследований нанотехнологий и наноматериалов", целевой программы "развитие научного потенциала высшей школы 2009–2011" Минобрнауки РФ № 2.1/10269 и поддержана грантом РФФИ (проект № 11-02-0662-а).

Список литературы

- Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov R.S., Geim A.K. // Rev. Mod. Phys. 2009. V. 81. N 1. P. 109–162.
- [2] Abergel D.S.L., Apalkov V, Berashevich J., Ziegler K., Chakraborty T. // Adv. Physics. 2010. V. 59. N 4. P. 261–482.
- [3] Давыдов С.Ю., Сабирова Г.И. // ФТТ. 2011. Т. 53. В. 3. С. 608-616.
- [4] Давыдов С.Ю., Сабирова Г.И. // Письма в ЖТФ. 2011. Т. 37. В. 11. С. 51–57.
- [5] Браун О.М., Медведев В.К. // УФН. 1989. Т. 157. В. 4. С. 631–666.
- [6] Давыдов С.Ю., Трошин С.В. // ФТТ. 2007. Т. 49. В. 8. С. 1508–1513.
- [7] Davydov S.Yu. // Appl. Surf. Sci. 2010. V. 257. N 5. P. 1506–1510.
- [8] Киттель Ч. Квантовая теория твердых тел. М.: Наука, 1967. 492 с.
- [9] Давыдов С.Ю. // Письма в ЖТФ. 2009. Т. 35. В. 18. С. 28-33.
- [10] Давыдов С.Ю. // Письма в ЖТФ. 2009. Т. 35. В. 21. С. 50-56.
- [11] Jin K.-H., Choi S.-M., Jhi S.-Y. // Phys. Rev. B. 2009. V. 82. P. 033414.
- [12] Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978. 792 с.
- [13] Давыдов С.Ю., Сабирова Г.И. // Письма в ЖТФ. 2010. Т. 36. В. 24. С. 77-84.
- [14] Lebegue S., Klintenberg M., Erikson O., Katsnelson M.I. // Phys. Rev. B. 2009.
 V. 79. P. 245117.
- [15] Zhou J., Wang Q., Sun Q., Chen X.C., Kawazoe Y. // Nano Lett. 2009. V. 79. N 11. P. 3867.