07

Кинетические особенности оптически стимулированной люминесценции в порошках нитрида алюминия

© А.С. Вохминцев, И.А. Вайнштейн, Д.М. Спиридонов, Д.А. Бекетов, А.Р. Бекетов

Научно-образовательный центр "Наноматериалы и нанотехнологии", Уральский федеральный университет имени первого Президента России Б.Н. Ельцина, Екатеринбург E-mail:vas@dpt.ustu.ru

Поступило в Редакцию 8 сентября 2011 г.

Исследован отклик ОСЛ УФ-облученных порошков AlN при комнатной температуре. Показано, что после возбуждения образцов фотонами энергий $3-5 \,\mathrm{eV}$ регистрируется интенсивное послесвечение, обусловленное изотермическим затуханием рекомбинационных процессов с участием мелких донорных центров. Установлено, что выделенный на фоне указанного затухания полезный ОСЛ-сигнал является суперпозицией двух компонент с порядками кинетики b = 1.0-1.2 и 1.7-2.1. Проведен анализ коэффициентов сверхлинейности полученных дозовых зависимостей светосуммы ОСЛ-отклика для каждой из кинетических компонент в сравнении с известными данными.

Наряду с традиционными применениями в оптоэлектронике монокристаллы и керамика на основе AlN активно рассматриваются как перспективные среды для создания высокочувствительных детекторов β - и УФ-излучения [1–3]. Исследования с использованием методов термо- (ТЛ) и оптически стимулированной люминесценции (ОСЛ) продемонстрировали комплексный характер протекающих после облучения процессов и показали наличие ограничений для практического использования нитрида алюминия в персональной дозиметрии (выраженный фединг, дозовая нелинейность и т. д.) [2–4]. Известно, что спектр дозиметрического сигнала AlN расположен в УФ- и видимой областях и связан, как правило, с рекомбинационными процессами, протекающими при участии вакансионных и примесных дефектов (V_{Al}, O_N и их комплексы) [2,4–6]. В настоящее время широко исследованы ТЛ и ОСЛсвойства нитрида алюминия в различных структурных состояниях —

10

11

керамика, пленки, монокристаллы, порошки, наностержни [2–4]. Однако при этом в рамках имеющихся количественных подходов недостаточно глубоко проанализирована кинетика процессов, в частности при оптической стимуляции материала. Это может дать дополнительную информацию о релаксационных механизмах в AlN после облучения, о механизмах запасания и хранения дозиметрической информации, о механизмах передачи запасенной энергии между метастабильными уровнями центров захвата и рекомбинации носителей заряда. Учитывая вышесказанное, цель данной работы заключалась в анализе и количественной оценке кинетических параметров ОСЛ-процессов, протекающих в УФ-облученных порошках нитрида алюминия при лазерной стимуляции.

Исследовался порошок AlN с размером зерен $0.2-0.8 \mu$ m, полученный субфторидным методом [7]. Для синтеза использовали алюминий фтористый чистый (ТУ-6-09-11 22-84 производства Уральского ПО "Галоген") и алюминий гранулированный (А98, Уральский завод химреактивов). Примеси в синтезируемый порошок специальным образом не вводились. Согласно результатам химического анализа, доминирующими примесями являются углерод и кислород с концентрациями 0.39 и 0.1 wt.% соответственно. Порошок запрессовали в медные стаканы с внутренним диаметром 10 mm, толщиной стенок и глубиной 2 mm. Перед проведением измерений образцы отжигали до температуры 773 К.

Образцы облучались УФ-излучением ртутной лампы высокого давления ДРТ-230 через оптическое стекло УФС-1, которое обеспечивает полосу пропускания 5.16–2.95 eV. Дозу УФ-излучения варьировали временем воздействия света t_{uv} на образцы. Регистрацию послесвечения, ОСЛ и ТЛ осуществляли на оригинальной спектрометрической установке. Для выделения исследуемой спектральной области применяли набор оптических стекол (УФС-1 и СЗС-22), обеспечивающих максимальный коэффициент пропускания 38.5% при энергии излучения 3.25 eV с полушириной 0.27 eV. Регистрацию свечения проводили фотоэлектронным умножителем ФЭУ-39А в счетном режиме. Для стимуляции ОСЛ применяли красный лазер 660 nm с интенсивностью излучения 50 mW \cdot cm⁻² в месте расположения образца.

Методика эксперимента заключалась в предварительном облучении образцов УФ-светом с последующей регистрацией сигнала ОСЛ в непрерывном режиме (CW-OSL) при комнатной температуре в течение

Рис. 1. Экспериментальные зависимости ОСЛ УФ-облученных образцов порошка AIN. Время облучения *t*_{uv} указано на рисунке.

10 min. Затем проводили отжиг порошка AlN до 773 К. В ходе такой термообработки происходило полное высвечивание активных ловушек, заполнявшихся при УФ-воздействии, и образцы возвращались в исходное состояние [3]. После чего цикл экспериментальных измерений повторяли, варьируя время облучения УФ-светом $t_{uv} = 5 \text{ s} - 30 \text{ min}$.

Результаты измерений ОСЛ в УФ-облученных образцах приведены на рис. 1. При увеличении времени облучения от 0.5 до 10 min начальная интенсивность свечения (в момент "laser on") увеличивается в 4 раза. В ходе регистрации ОСЛ в непрерывном режиме интенсивность люминесценции уменьшается почти на порядок за 3 min.

Для анализа полученных зависимостей проводили выделение полезного ОСЛ-сигнала путем вычитания из экспериментальных данных фона, формирующегося за счет интенсивного послесвечения образцов в результате облучения. Кривые послесвечения аппроксимировали формулой Беккереля $L(t) = L_0(1 + at)^{-r}$, где L_0 — начальная интенсив-

Рис. 2. Разложение кривой ОСЛ для $t_{uv} = 120$ s на две компоненты по выражению (1). Пунктирные линии — элементарные компоненты С1 и С2; сплошная линия — суммарная зависимость ОСЛ.

ность послесвечения, *а* и *r* — эмпирические постоянные (см. врезку на рис. 1, штриховая линия) [8]. Данная экспериментальная методика и необходимость учета персистентного послесвечения в порошках AIN для целей твердотельной дозиметрии обсуждаются в [3]. Данные ОСЛ после такой математической обработки представлены на рис. 2.

Для количественного описания полученных кривых ОСЛ использовали уравнение кинетики общего порядка [9]:

$$I(t) = I_0 [1 + (b - 1)At]^{b/(1-b)},$$
(1)

где

$$A = rac{p}{R} \left(rac{n_0}{N}
ight)^{b-1}$$
и $I_0 = n_0 A_2$

 I_0 — интенсивность в начальный момент стимуляции, а.u.; b — порядок кинетики; p — скорость стимуляции носителя заряда с ловушки, s⁻¹; R — отношение вероятности захвата к вероятности рекомбинации; n_0 —

Парамеры разложения исследуемых зависимостей ОСЛ

t_{uv} , s	Компонента С1			Компонента С2		
	I_0 , a.u.	A, s^{-1}	$b \pm 0.1$	I_0 , a.u.	A, s^{-1}	$b \pm 0.1$
10	7230	0.050	2.11	1150	0.0085	1.00
15	12728	0.046	2.19	2327	0.0091	1.11
30	29862	0.043	1.94	4066	0.0086	1.04
60	51717	0.052	1.80	13440	0.0109	1.19
120	72575	0.045	1.72	19098	0.0102	1.09
300	105112	0.040	1.79	28128	0.0088	1.02
600	101689	0.037	1.69	32763	0.0080	1.00

начальная концентрация захваченных носителей заряда на ловушках, m^{-3} ; N — общая концентрация ловушек, m^{-3} .

Отметим, что результаты эксперимента успешно описываются уравнением (1) с одной кинетической компонентой. Однако при таком подходе порядок кинетики b > 6, т.е. не имеет физического смысла, и увеличивается с ростом t_{uv} . Этот факт указывает на комплексный характер регистрируемых процессов люминесценции при оптической стимуляции образцов после УФ-облучения. В этой связи далее экспериментальные зависимости ОСЛ были описаны с высокой степенью точности двумя компонентами общего порядка выражения (1). На рис. 2 показан результат аппроксимации для кривой ОСЛ с $t_{uv} = 120$ s. Значения параметров разложения приведены в таблице.

Видно, что при увеличении t_{uv} порядок кинетики компоненты C1 изменяется в диапазоне $b = (1.7-2.1) \pm 0.1$, а для компоненты C2 близок к первому $b = (1.0-1.2) \pm 0.1$. Значения b > 1.7 и изменение параметра с увеличением дозы свидетельствуют о наличии конкурирующих процессов повторного захвата и подтверждают мультистадийный характер люминесценции после прекращения воздействия УФ-света на образец.

Данный подход, при котором зависимости ОСЛ описываются двумя компонентами, согласуется с результатами исследований кинетики ТЛ в порошках и монокристаллах нитрида алюминия. Ранее нами было установлено, что в температурном диапазоне от RT до 773 К активными являются как минимум две ловушки с термическими энергиями активации $E_A = 0.65$ и 1.08 eV [3,10]. Наличие в кристаллических порошках AlN:О двух активных ловушек с $E_A = 0.58$ и 1.20 eV и $E_A = 0.67 - 0.85$

и 1.20 eV было показано независимыми данными измерений оптического поглощения и температурной зависимости фотопроводимости соответственно [5]. При изучении процессов ТЛ выше комнатной температуры в объемных монокристаллах AlN также были отмечены два типа донорных центров с $E_A = 0.35$ и 0.75 eV, последний из которых был приписан вакансии азота [4,6].

Сопоставляя полученные и известные данные по исследованию свойств ОСЛ УФ-облученных порошков AlN, можно сказать, что наблюдаемая люминесценция обусловлена несколькими (как минимум двумя) излучательными каналами релаксации запасенной энергии. В ходе лазерной стимуляции образцов протекают комбинированный процесс термооптического опустошения ловушек с последующей рекомбинацией носителей заряда при участии вакансионных и кислородсвязанных центров — V_N, O_N и (V_{Al} – O_N) [4–6]. При этом в указанном механизме не участвуют примесные дефекты углерода, которые имеют характеристическое свечение в полосе 4.44 eV [11].

На рис. 3 представлены дозовые зависимости светосумм для экспериментальных кривых ОСЛ и компонент разложения С1 и С2. Видно, что все эти характеристики в двойных логарифмических координатах близки к линейным в диапазоне $t_{uv} < 120$ s. При этом параметры наклона для экспериментальной кривой составляют k = 1.04, для компонент С1 и C2 — k = 1.09 и 1.00 соответственно (погрешность оценки $\Delta k = \pm 0.01$).

Нелинейность дозовых зависимостей, представленных в двойных логарифмических координатах, может быть проанализирована с помощью коэффициента сверхлинейности [8] $f = (S_t/t_{uv})/(S_0/t_{uv0})$, где S_t — светосумма ОСЛ при времени облучения t_{uv} , S_0 — светосумма для времени облучения t_{uv0} в начале линейного участка дозовой характеристики (в нашем случае $t_{uv0} = 5$ s). Расчетные значения составили для экспериментальной кривой f = 1.38, а для компонент С1 и C2 — f = 1.62 и 1.18 соответственно. Наблюдаемые участки сверхлинейности (рис. 3) могут быть обусловлены наличием нескольких активационных процессов, протекающих во время оптической и/или термической стимуляции заполненных ловушек. При этом можно говорить, что при высвечивании центров, ответственных за формирование компоненты C2, конкуренция менее выражена, что проявляется в значениях порядка кинетики $b \approx 1$. Данный вывод вполне согласуется с результатами исследований термоч

Рис. 3. Дозовые зависимости для экспериментальных кривых и расчетных компонент С1 и С2 ОСЛ. Пунктирные линии — линейная аппроксимация.

других широкозонных материалах [8,9,12,13]. Так, дозовые зависимости светосуммы ТЛ в анионодефектных монокристаллах оксида алюминия в полосе свечения 2.4 eV, где участок сверхлинейности слабо выражен, характеризуются параметрами k = 1.01, f = 1.3 и значением порядка кинетики $b \approx 1.0-1.2$ [13]. В то же время в полосе свечения 3.0 eV, где дозовые характеристики существенно нелинейны и имеют коэффициенты f = 2.1-3.7, количественный анализ кинетических механизмов свечения приводит к выводам о преобладании процессов более высокого порядка с наличием конкуренции между ловушками различного типа [12].

Полученные в представленной работе результаты свидетельствуют о том, что при использовании отклика ОСЛ исследуемых образцов для УФ-дозиметрии более достоверная оценка поглощенной дозы в диапазоне рассматриваемых t_{uv} может быть выполнена на основе параметров кинетической компоненты С2. Это позволяет говорить о возможности применения порошков AlN в качестве надежного

детекторного материала в системах и приборах on-line УФ-мониторига окружающей среды и источников излучения.

Работа выполнена в рамках госконтракта по Федеральной целевой программе "Научные и научно-педагогические кадры инновационной России" на 2009–2013 годы. А. С. Вохминцев благодарит за финансовую поддержку программу развития УрФУ "Проведение научных исследований молодыми учеными — кандидатами наук".

Список литературы

- Trinkler L., Botter-Jensen L., Berzina B. // Rad. Prot. Dos. 2002. V. 100. N 1–4. P. 313–316.
- [2] Trinkler L, Berzina B. // Advances in Ceramics-Characterization, Raw Materials, Processing, Properties, Degradation and Healing / Ed. by Costas Sikalidis. Rijeka: InTech, 2011. Chapter 4. P. 59–82.
- [3] Вохминцев А.С., Вайнштейн И.А., Бекетов Д.А., Спиридонов Д.М., Бекетов А.Р., Харитонов Д.В. // Наносистемы, наноматериалы, нанотехнологии. 2011. Т. 9. В. 2. С. 365–374.
- [4] Солматов В.А., Ильин И.В., Солматова А.А., Толмачев Д.О., Мохов Е.Н., Баранов П.Г. // ФТТ. 2011. Т. 53. В. 6. С. 1121–1125.
- [5] Pacesova S., Jastrabik L. // Czech. J. Phys. 1979. V. B29. P. 913-923.
- [6] Soltamov V.A., Ilyin I.V., Soltamova A.A., Mokhov E.N., Baranov P.G. // J. Appl. Phys. 2010. V. 107. P. 113515-1–9.
- [7] Афонин Ю.Д., Бекетов А.Р., Черный Н.Л. Патент России № 2312060 (RU 2312060 C2), приоритет от 28 января 2005 г., зарегистрирован в Гос. реестре изобретений Российской Федерации 10 декабря 2007 г.
- [8] Chen R., McKeever S.W.S. Theory of Thermoluminescence and Related Phenomena. Singapore: World Scientific, 1997. P. 576.
- [9] Botten-Jensen L., McKeever S.W.S., Wintle A.G. Optically Stimulated Luminescence Dosimetry. Amsterdam: Elsevier, 2003. P. 354.
- [10] Спиридонов Д.М., Белоусова Е.Ю., Вохминцев А.С., Вайнитнейн И.А. // Тез. докл. XI Всерос. молодежной школы-семинара по проблемам физики конденсированного состояния вещества. Екатеринбург: ИФМ УрО РАН, 2010. С. 118.
- [11] Tang X., Hossain F., Wongchotigul K., Spencer M.G. // Appl. Phys. Lett. 1998.
 V. 72. N 12. P. 1501–1503.
- [12] Кортов В.С., Мильман И.И., Никифоров С.В., Моисейкин Е.В. // ФТТ. 2006.
 Т. 48. В. 3. С. 421–426.
- [13] Weinstein I.A., Vokhmintsev A.S., Kortov V.S. // Radiat. Meas. 2008. V. 43. P. 259–262.
- 2 Письма в ЖТФ, 2012, том 38, вып. 4