Мессбауэровское исследование наночастиц маггемита

© И.Н. Захарова, М.А. Шипилин, В.П. Алексеев, А.М. Шипилин

Ярославский государственный технический университет E-mail:amship@mail.ru Ярославский государственный университет им. П.Г. Демидова Московский государственный университет им. М.В. Ломоносова

Поступило в Редакцию 30 июня 2011 г.

Проведено мессбауэровское исследование маггемита (γ -Fe₂O₃) различной дисперсности ("массивного" и нанодисперсного со средним размером частиц 20 и 15 nm). Получена и проанализирована информация о глубине поверхностной области этих наномагнитных частиц и особенностях их магнитного состояния. Методика исследования актуальна для изучения большого ряда наномагнетиков.

Отличительной особенностью свойств наночастиц является то, что объем поверхностного слоя такой частицы сравним с ее общим объемом. Изучение магнитного состояния этого слоя и отработка методики его мессбауэровского исследования проводились нами на примере γ -Fe₂O₃ — одного из наномагнетиков, используемых в медицинских и технических целях [1–6]. Методами электронной микроскопии и рентгеновской дифрактометрии для исследованных образцов определен средний размер частиц d. Исследованы обр. № 1 — "массивный" маггемит с $d \sim 1 \mu$ m и два порошка маггемита, синтезированных методом электрохимического осаждения [7], с d = 20 nm (обр. № 2) и с d = 15 nm (обр. № 3). Тот факт, что обр. № 1–3 представляют собой маггемит, установлен на основе рентгеновских данных.

1

05

Таблица 1. Изомерный сдвиг (δ), квадрупольное смещение компонент спектра (ε), эффективное магнитное поле (H_n) и относительная интенсивность секстета (I) — параметры мессбауэровских спектров ядер ⁵⁷ Fe магтемита (γ -Fe₂O₃); Δr — толщина поверхностного слоя частицы

N₂	Массивный обр. № 1				Дисперсный обр. № 2 (средний размер $d = 20 \text{nm}$)				
секстета	δ, mm/s	ε, mm/s	H _n , kOe	I, %	δ, mm/s	ε, mm/s	H _n , kOe	I, %	Δr , nm
1	$\begin{array}{c} 0.36 \\ \pm 0.1 \end{array}$	0	502 ± 1	$\begin{array}{c} 47.5 \\ \pm 1.0 \end{array}$	$\begin{array}{c} 0.32 \\ \pm 0.01 \end{array}$	$\begin{array}{c} -0.002 \\ \pm 0.001 \end{array}$	503 ± 1	47.2 ±0.1	
2	$\begin{array}{c} 0.47 \\ \pm 0.1 \end{array}$	0	490 ± 2	$\begin{array}{c} 52.5 \\ \pm 1.4 \end{array}$	$\begin{array}{c} 0.34 \\ \pm 0.01 \end{array}$	$\begin{array}{c} -0.002 \\ \pm 0.001 \end{array}$	488 ± 1	$\begin{array}{c} 33.8 \\ \pm 0.1 \end{array}$	0.75
3					$\begin{array}{c} 0.44 \\ \pm 0.02 \end{array}$	$\begin{array}{c} 0.000 \\ \pm 0.001 \end{array}$	455 ± 3	$\begin{array}{c} 9.6 \\ \pm 0.2 \end{array}$	
4					$\begin{array}{c} 0.45 \\ \pm 0.02 \end{array}$	$\begin{array}{c} 0.001 \\ \pm 0.001 \end{array}$	414 ± 3	$5.8 \\ \pm 0.2$	
5					$\begin{array}{c} 0.45 \\ \pm 0.03 \end{array}$	$\begin{array}{c} 0.000 \\ \pm 0.001 \end{array}$	359 ± 4	$\begin{array}{c} 3.6 \\ \pm 0.3 \end{array}$	

Мессбауэровские спектры образцов регистрировались при температурах T = 100 и 300 К в геометрии пропускания, источник излучения — ⁵⁷Со в матрице Сг. Путем обработки экспериментальных данных с помощью программы "Spectr" определялись изомерный сдвиг мессбауэровской линии δ , квадрупольное смещение компонент спектра ε , эффективное магнитное поле на ядрах ⁵⁷Fe H_n и относительная интенсивность мессбауэровской линии I (табл. 1). По данным о мессбауэровском спектре с помощью программы "Distri" была получена функция распределения эффективных магнитных полей на ядрах ⁵⁷Fe $p(H_n)$ и определены величины H_n — значения полей, на которые приходятся максимумы функции $p(H_n)$, а также величины S — относительные площади под этими максимумами (табл. 2).

Поскольку маггемит имеет структуру шпинели, естественно считать, что в его месбауэровском спектре должна присутствовать суперпозиция секстетов, обусловленных вкладами ионов железа, принадлежащих магнитоупорядоченным частицам, находящимся в различных кристалло-

Таблица 2. Эффективное магнитное поле (H_n) и относительная площадь под максимумом (S) — параметры функции распределения, соответствующей мессбауэровскому спектру обр. № 3; Δr — толщина поверхностного слоя частицы

No makchmyma	Средний размер частиц — $d = 15 \mathrm{nm}$					
1 V2 Makerini yina	H_n , kOe	<i>S</i> , %	Δr , nm			
1	484	71				
2	442	23	0.70			
3	384	6				

графических состояниях. В спектре массивного маггемита виден практически один секстет, очевидно, вследствие того, что параметры вкладов от ионов Fe³⁺ в А- и В-местах шпинельной структуры маггемита близки по величине.

Спектр обр. № 2 (рис. 1) имеет сложный характер, обусловленный, видимо, тем, что вклад в него ядер "поверхностных" Fe^{3+} , "обедненных" обменными связями, является значительным. Очевидно, этот вклад еще существенней для обр. № 3 с меньшим размером частиц (рис. 2). Спектр последнего имеет, в отличие от обр. № 2, центральный дублет, соответствующий, по-видимому, наиболее мелким частицам маггемита, находящимся в суперпарамагнитном состоянии. Частица магнитоупорядоченного материала проявляет суперпарамагнитные свойства, если ее размер меньше некоторой критической величины, эта величина уменьшается при понижении температуры [1]. В спектре обр. № 3, полученном при T = 100 К, отсутствует названный дублет, что подтверждает соответствие дублета в спектре на рис. 2 суперпарамагнитным частицам.

В табл. 1 сопоставлены параметры спектров массивного и нанодисперсного маггемита (обр. № 2). Расшифровка спектра образца № 2 (рис. 1) с использованием программы "Spectr" показала, что наилучшим образом он описывается как суперпозиция пяти секстетов. Анализ величин эффективных магнитных полей на ядрах ⁵⁷ Fe H_n позволяет считать поля $H_{n1} = 503$ kOe и $H_{n2} = 488$ kOe полями на ядрах ионов Fe³⁺ в А- и В-внутренней области частицы. Остальные три поля относятся, по-видимому, к "обедненным" обменными связями ионам железа, принадлежащим к поверхностной области частицы. Заметим,

Рис. 1. Мессбауэровский спектр наночастиц γ -оксида железа при T = 300 K (d = 20 nm).

что в первом приближении можно говорить о двух типах таких ионов. Первый тип (1) — "внешние" ионы Fe³⁺, состояние которых отличается от катионов внутренней области вследствие частичного отсутствия соседних ионов. Второй тип (2), тоже отличающийся от внутренних катионов, это близкие к поверхности частицы катионы Fe³⁺, у которых наличествуют все обменные связи, однако часть последних осуществляются с "внешними", т.е. относящимися к типу (1), катионами. В дальнейшем пространственные области наночастицы, содержащие названные выше два типа поверхностных катионов, будем условно называть слоями (1) и (2). Можно предположить, что эффективные магнитные поля $H_{n3} = 455$ kOe и $H_{n4} = 414$ kOe соответствуют принадлежащим поверхностному слою (2) ионам Fe³⁺ в A- и B-местах кристаллической решетки маггемита, а поле $H_{n5} = 359$ kOe соответствует ионами Fe³⁺ поверхностного слоя (1) магнитной частицы. Анализ данных табл. 1 показывает, что поля H_{n1} и H_{n2} на ядрах ⁵⁷ Fe во внутренней области наночастицы для обр. № 2 в пределах погрешности совпадают с аналогичными полями для массивного образца маггемита.

Рис. 2. Мессбауэровский спектр наночастиц γ -оксида железа при T = 300 K (d = 15 nm).

По сравнению с ними величины H_n на ядрах железа в поверхностной области существенно снижены.

Данные об интенсивности парциальных спектров (табл. 1) позволяют провести для обр. № 2 оценку размеров поверхностной области наночастицы, а также составляющих ее пространственных областей, содержащих катионы типов (1) и (2). Считая, что суммарная интенсивность секстетов, относящихся к поверхностной области, $(I_5 + I_4 + I_3)$, выраженная в долях от общей площади спектра, равна величине $V_e/V = 3\Delta r/r$, где $V = 4/3\pi r^3$ — общий объем наночастицы, $V_e = 4\pi r^2\Delta r$ — объем всей ее поверхностной области, и учитывая d = 2r = 20 nm, получим $\Delta r = 0.75$ nm. Аналогично, зная величину I_5 , оценим $\Delta r_{el} = 0.12$ nm — толщину поверхностного слоя (1), и, далее, толщину поверхностного слоя (2) $\Delta r_{e2} = \Delta r - \Delta r_{el} = 0.63$ nm.

Диагностика магнитных особенностей наночастиц проводилась нами также путем анализа функций распределения эффективных магнитных полей на ядрах железа $p(H_n)$, полученных, как указано выше, с использованием программы "Distri", не требующей предварительного

Рис. 3. Функция распределения эффективных магнитных полей на ядрах железа, соответствующая спектру на рис. 2.

разложения сложного экспериментального спектра на секстеты. График функции $p(H_n)$ для массивного маггемита (обр. № 1) имеет один максимум, отвечающий близким эффективным магнитным полям на ядрах ⁵⁷Fe в А- и В-местах кристаллической решетки $H_n \sim 490-500$ kOe. График функции $p(H_n)$ для обр. № 3 (рис. 3) имеет три максимума, соответствующих полям $H_{ni} = 484$ kOe, $H_{ne2} = 442$ kOe и $H_{ne1} = 384$ kOe. Можно предположить, что эти максимумы относятся к разным областям наночастиц. максимум, приходящийся на поле $H_{ni} = 484$ kOe, соответствует, вероятно, ионам железа в А- и В-местах кристаллической решетки, принадлежащим внутренней области частиц обр. № 3, причем даже для этой области, возможно, имеется незначительное снижение H_n по сравнению со случаем более крупных частиц. Максимумы при более низких полях H_{nel} и H_{ne2} соответствуют, предположительно, "обедненным" обменными связями ионам Fe³⁺ типов (1) и (2), принадлежащим "поверхностной" области наночастиц.

Считая площади максимумами графика $p(H_n)$ пропорциональными объемам соответствующих пространственных областей, мы определили отношение объема всей поверхностной области наночастицы V_e к ее

общему объему V, и изложенным выше способом оценили размер всей поверхностной области частицы $\Delta r = 0.70$ nm. Аналогично можно оценить размер области, содержащей катионы типа (1) $\Delta r_{el} = 0.15$ nm. Заметим, что изложенная выше интерпретация мессбауэровских данных и сделанные количественные оценки согласуются с существующими представлениями теории магнетизма. Так, в работе [8], где рассматривается случай идеальной кристаллической решетки и предельно малой температуры, приведены оценки вкладов от каждой из косвенных обменных связей в эффективное магнитное поле на ядре и
она \mbox{Fe}^{3+} в структуре шпинели, сделанные на основе метода молекулярных орбиталей в приближении линейной комбинации атомных орбиталей; для Аи В-мест они составляют соответственно 8 и 12 kOe. Т.е., отсутствие у катиона половины таких связей должно снижать H_n на $\sim 40-50\,{
m kOe}$ (для В- и А-мест). Для ионов железа, находящихся в поверхностной области наночастицы, снижение эффективных магнитных полей на ядрах ⁵⁷ Fe по сравнению с *H_n* для "внутренней" области частицы нельзя, повидимому, оценить путем простого подсчета отсутствующих обменных связей, поскольку для любого "поверхностного" иона железа состояние соседних катионов также отличается от состояния в "массивном" образце и, кроме того, вблизи поверхности должны иметь место существенные искажения кристаллической решетки. Однако для исследованных магнетиков разница полученных значений эффективных магнитных полей на ядрах ⁵⁷Fe, относящихся к разным областям наночастицы (табл. 1, 2), согласуется по порядку величины с оценками [8]. Можно заметить также, что полученная для образцов № 2 и 3 общая глубина "поверхностной" области наночастицы Δr , составляющая 0.75 и 0.70 nm соответственно, сопоставима с длиной обменной связи ~ 0.4 nm, что кажется достоверным с учетом представлений о структуре ферриташпинели. При этом полученная в наших оценках толщина "внешнего слоя", содержащего катионы типа (1), Δr_{el} оказалась сравнимой с размерами этих ионов.

Таким образом, на основании анализа параметров мессбауэровских спектров исследованных образцов, в также вида функции распределения эффективных магнитных полей $p(H_n)$ на ядрах ⁵⁷Fe в этих магнетиках получена важная информация о размерах поверхностной области наночастиц, об особенностях их магнитного состояния, об эффективных магнитных полях на ядрах железа в различных областях частицы. Полученные результаты согласуются с существующими теоретическими представлениями.

Список литературы

- [1] Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М.: КомКнига, 2006. 592 с.
- [2] Губин С.П., Кокшаров Ю.А., Хомутов Г.Б., Юрков Г.Ю. // Усп. хим. 2005. Т. 74. № 6. С. 539–574.
- [3] Shylesh S., Schweizer J., Ulber R., Thiel W., Schunemann V. // J. Phys.: Conf. series. 2010. V. 217. P. 012114.
- [4] Urszula Laska, Christopher G. Frost, Gareth J. // Price and Pawel K. Plucinski // Journal of Catalysis. Volume 268. Issue 2. 10 December 2009. Pages 318–328.
- [5] Bertorelle F., Wilhelm C., Roger J. et al. // Langmuir. 2006. V. 22(12). P. 5385– 5381.
- [6] *Петрова О.* // Межд. научн. журнал "Альтернативная энергетика и экология" АЭЭ. 2007. № 1 (45).
- [7] Калаева С.З., Ерехинская А.Г., Макаров В.М., Захарова И.Н., Шипилин А.М., Шипилин М.А. // Экология и промышленность России, сентябрь 2009. С. 16–17.
- [8] Николаев В.И., Русаков В.С. Мессбауэровские исследования ферритов. М.: Изд-во Моск. ун-та, 1985. 223 с.