06

Электронно-микроскопическое исследование тонкопленочных лазерных конденсатов HfO₂

© А.Г. Багмут, И.А. Багмут, В.А. Жучков, М.О. Шевченко

Национальный технический университет "Харьковский политехнический институт", Харьков, Украина E-mail: Bagmut@kpi.Kharkov.ua

Поступило в Редакцию 22 июня 2011 г.

Методами просвечивающей электронной микроскопии и электронографии исследованы пленки диоксида гафния, полученные импульсным лазерным распылением Hf в атмосфере кислорода. Выявлены условия образования аморфной фазы, а также тетрагональной и моноклинной модификации HfO₂. На ориентирующих подложках кристаллическая фаза формируется при более низких температурах по сравнению с нейтральными подложками. Эффект эпитаксии проявляется для тетрагональной модификации HfO₂. При отжиге на воздухе аморфная пленка кристаллизуется с образованием моноклинной модификации HfO₂.

Устойчивой модификацией диоксида гафния (HfO₂) вплоть до 1923 К является моноклинная модификация. Данные о ее структуре приведены в таблицах International Center for Diffraction Data — JCPDC: a = 0.51157 nm, b = 0.51819 nm, c = 0.52851 nm, $\beta = 99.259^{\circ}$ (файл 43-1017 C). Выше 1923 К эта модификация переходит в тетрагональную с параметрами a = 0.514 nm, c = 0.525 nm (файл 08-0342 таблиц JCPDC). Существует и орторомбическая модификация HfO₂, для которой a = 0.5008 nm, b = 0.5062 nm, c = 0.5223 nm (файл 21-0904 таблиц JCPDC). Интерес к диоксиду гафния в тонкопленочном состоянии обусловлен его высокой диэлектрической проницаемостью (16–45), термодинамической устойчивостью и значением ширины запрещенной зоны. Эти качества предполагают возможность его использования для замены SiO₂, применямого в качестве подзатворного диэлектрика в приборах на основе структур металл–диэлектрик–полупроводник [1].

45

Для получения пленок часто используют методы гидридной эпитаксии (MOCVD) и молекулярного наслаивания (ALD). Естественно, что пленки, синтезированные разными методами, имеют разную микроструктуру. В частности, тенденция к формированию аморфных пленок HfO₂, сильнее выражена при использовании метода ALD [1]. Амофрные слои HfO₂ методом ALD были получены при температуре роста $T_G = 500$ K, а кристаллические — в интервале $T_G = 570-1200$ K [2]. Кристаллические пленки содержали моноклинную фазу HfO₂ независимо от типа подложки (монокристаллический Si или аморфный SiO₂).

Влияние подложки на структуру пленок HfO₂, полученных методом ALD, отмечено в [3]. Так, на подложках SiO₂, полученных термическим окислением кремния, формировались поликристаллические пленки, содержащие моноклинную, тетрагональную и ромбические фазы. На подложках SiO₂, полученных химическим окислением кремния, формировались аморфные пленки.

Высокотемпературную кубическую фазу HfO₂ с параметром кристаллической решетки $a_0 = 0.513$ nm наблюдали в приповерхностных слоях образцов, выращенных методом ALD при температуре подложки $T_s = 1153 - 1213 K$ [4]. При этом основная масса вещества диоксида гафния имела моноклинную решетку. Показано, что малый размер кристаллов (6–9 nm) и недостаток кислорода в поверхностном слое пленки являются факторами, предотвращающими трансформацию кубической фазы HfO₂ в моноклинную.

При импульсном лазерном осаждении вещества образование и рост на подложке кластеров происходит в неравновесных условиях, предопределяющих в дальнейшем возможность формирования метастабильных структурных состояний. Лазерным распылением мишени диоксида циркония (ZrO₂), являющегося структурным аналогом HfO₂, на подложках (100) Si были получены пленки высокотемпературной кубической фазы ZrO₂ [5].

Цель данной работы состояла в получении и исследовании структуры и фазовых превращений при отжиге пленок, осажденных методом лазерной абляции Hf.

Образцы готовили посредством импульсного лазерного распыления гафния в атмосфере кислорода. Пароплазменный поток осаждали как на ориентирующие подложки (монокристаллы (001)KCl), так и на нейтральные подложки (слои аморфного углерода). Применяли стандартную технологию лазерного осаждения [6]. Использовали импульсное

Номер линии	Осаждение при $T_s = 410 \mathrm{K}$		Осаждение при $T_S = 290 \mathrm{K}$ и последующий отжиг пленки на воздухе при 770 K	
	<i>d</i> , nm	hkl	<i>d</i> , nm	hkl
1	0.5145	$(100)_t$	0.5190	$(010)_m$
2	0.3627	$(110)_t$	0.3693	$(011)_{m}$
3	0.3177	$(\overline{1}11)_{m}$	0.3178	$(\overline{1}11)_{m}$
4	0.3010	$(111)_t$	0.2840	$(111)_{m}$
5	0.2853	$(111)_{m}$	0.2606	$(002)_{m}$
6	0.2552	$(200)_t$	0.2333	$(012)_{m}$
7	0.2301	$(120)_{m}$	0.2182	$(102)_{m}$
8	0.1808	$(220)_t$	0.2020	$(112)_{m}$
9	0.1623	$(310)_t$	0.1847	$(022)_{m}$
10	0.1552	$(311)_t$	0.1813	$(220)_{m}$

Результаты электронографического анализа пленок, осажденных лазерным распылением мишени Hf в атмосфере кислорода

t — тетрагональная фаза HfO₂; *m* — моноклинная фаза HfO₂.

излучение лазера наносекундной длительности с длиной волны $1.06 \,\mu$ m. Толщина пленок *t* составляла 28-30 nm. Температуру подложки *T_S* варьировали в интервале 290-700 K. Распыление Hf проводили в атмосфере кислорода при давлении ~ 0.13 Ра в проточном режиме. Структурные исследования проводились методами электронографии и просвечивающей электронной микроскопии. Фазовые превращения инициировали отжигом пленок на воздухе.

Установлено, что в зависимости от T_S формируются следующие структурно-фазовые состояния. В интервале 290–360 К формируются аморфные пленки. Кристаллическая фаза HfO₂ в аморфной матрице формируется при $T_S > 360$ К. На электронно-микроскопическом уровне зародыши кристаллической фазы размером $D \approx 10$ nm были выявлены при $T_S = 370$ К. С ростом T_S размер выделений и объемная доля кристаллической фазы HfO₂ монотонно возрастают. На рисунке *а* и *b* соответственно представлены электронограмма и электронно-микроскопическое изображение пленки, осажденной при $T_s = 410$ К. Пленка двухфазная. Средний размер выделений кристаллической фазы в аморфной матрице $\langle D \rangle \approx 60$ nm. Результаты расшифровки электроно-

Электронограмма и электронно-микроскопическое изображение пленки HfO₂, осажденной при $T_S = 410$ K (a, b); $T_S = 290$ K после отжига на воздухе при 770 K длительностью 20 min (c, d).

граммы представлены в таблице. Согласно таблице, кристаллическая фаза в пленке представлена тетрагональной и моноклинной модификациями HfO_2 . Тип и расположение рефлексов на электронограмме рисунка *а* свидетельствует о том, что кристаллы моноклинной модификации HfO_2 не имеют преимущественной ориентировки. В то же время кристаллы тетрагональной модификации HfO_2 обнаруживали двухпозиционный рост в параллельной относительно подложки ориентации с соблюдением соотношения:

$$[100](001)$$
HfO₂// $[100](001)$ KCl, (1a)

$$[100](001)$$
HfO₂// $[010](001)$ KCl. (1b)

Ось зоны кристаллов соответствовала направлению [001] HfO₂.

Отсутствие преимущественной относительно подложки ориентировки у кристаллов моноклинной модификации HfO_2 и ее наличие у кристаллов тетрагональной модификации свидетельствует о различном характере распределения этих фаз по толщине пленки. Большая часть кристаллов тетрагональной модификации HfO_2 формировалась вблизи подложки (001) KCl и испытывала ее ориентирующее воздействие. Кристаллы моноклинной модификации HfO_2 образовывались на более поздних стадиях формирования пленки вблизи ее ростовой поверхности. Они не испытывали ориентирующего влияния подложки, поскольку были экранированы от нее аморфным слоем HfO_2 .

Влияние ориентирующей подложки (001) КСІ проявляется также в инициации самого процесса формирования кристаллической фазы в пленке. Пассивация поверхности (001) КСІ слоем аморфного углерода препятствует образованию кристаллической фазы в пленке. На поверхности аморфного углерода при той же температуре $T_S = 410$ К формируется аморфная пленка HfO₂.

При $T_S \ge 640$ К формируется кристаллическая пленка HfO₂. При этом кристаллы тетрагональной фазы HfO₂ сохраняют ориентационные соотношения (1a) и (1b).

На рисунке *с* и *d* соответственно представлены электронограмма и электронно-микроскопическое изображение пленки HfO₂, осажденной при $T_S = 290$ K после отделения от подложки и отжига на воздухе при 770 K (20 min). Результаты расшифровки электронограммы на рисунке *с* представлены в таблице. Согласно таблице, после отжига кристаллическая фаза в пленке представлена исключительно моноклинной модификацией HfO₂. Тип и расположение рефлексов на электронограмме,

приведенной на рисунке c, свидетельствует о том, что кристаллы моноклинной модификации HfO₂ образуют поликристаллическую пленку без преимущественной ориентации.

Таким образом, в работе показано, что метод импульсного лазерного распыления мишени Hf в атмосфере кислорода с последующей конденсацией продуктов лазерной эрозии на подложке применим для получения пленок диоксида гафния. При комнатной температуре подложки формируется аморфная пленка HfO₂. Повышение температуры конденсации инициирует формирование в пленке кристаллической фазы, представленной тетрагональной и моноклинной модификациями HfO₂. На ориентирующих подложках кристаллическая фаза HfO₂ формируется при более низких температурах по сравнению с нейтральными подложками. Эффект эпитаксии проявляется для тетрагональной модификации HfO₂. При отжиге на воздухе аморфная пленка кристаллизуется с образованием моноклинной модификации HfO₂.

Список литературы

- Соколов А.А., Овчинников А.А., Лысенков К.М. и др. // ЖТФ. 2010. Т. 80. В. 7. С.131–136.
- [2] Aarik J., Mändar H., Kirm M., Pung L. // Thin solid films. 2004. V. 466. P. 41-47.
- [3] *Ho M.-Y., Gong H., Wilk G.D.* et al. // Applied Physics. 2003. V. 93. N 3. P. 1477–1481.
- [4] Aarik J., Aidla A., Mändar H. et al. // Applied Surface Science. 2001. V. 173. P. 15–21.
- [5] Пугачевский М.А., Заводинский В.Г., Кузьменко А.П. // ЖТФ. 2011. Т. 81.
 В. 2. С. 98–102.
- [6] Багмут А.Г., Шипкова И.Г., Жучков В.А. Письма в ЖТФ. 2010. Т. 36. В. 8. С. 52–59.