09 Граница обобщенной синхронизации в системе двух однонаправленно связанных генераторов на туннельном диоде

© О.И. Москаленко, А.С. Павлов

Саратовский государственный университет им. Н.Г. Чернышевского E-mail: moskalenko@nonlin.sgu.ru

Поступило в Редакцию 30 июня 2011 г.

Исследовано расположение границы обобщенной синхронизации в системе двух однонаправленно связанных генераторов на туннельном диоде. Обнаружены особенности ее поведения в области относительно больших значений расстройки собственных частот взаимодействующих систем. С помощью анализа трансформации спектрального состава сигнала с ведомой системы объяснены характер расположения границы и физические механизмы, приводящие к установлению режима обобщенной синхронизации.

Синхронизация хаотических колебаний — одно из важнейших нелинейных явлений, привлекающих к себе широкое внимание исследователей [1], имеющих как теоретическое, так и практическое значение (например, в биологических и физиологических задачах, при скрытой передаче информации с помощью хаотических сигналов, при управлении системами сверхвысокочастотной электроники и т.п.) [2-4]. В настоящее время выявлено несколько типов хаотической синхронизации, среди которых наибольший интерес представляет режим обобщенной синхронизации [5], а также его взаимосвязь с фазовой синхронизацией [6]. Режим обобщенной синхронизации означает, что между состояниями взаимодействующих однонаправленно связанных ведущего $\mathbf{x}_d(t)$ и ведомого $\mathbf{x}_r(t)$ хаотических осцилляторов существует такая функциональная зависимость F[·], при которой после завершения переходного процесса устанавливается функциональное соотношение $\mathbf{x}_r(t) = \mathbf{F}[\mathbf{x}_d(t)]$. Известно несколько методов для диагностирования режима обобщенной синхронизации между хаотическими осцилляторами,

45

таких как метод ближайших соседей [5,7], метод расчета условных ляпуновских экспонент [8] и метод вспомогательной системы [9]. Фазовая же синхронизация означает, что происходит захват фаз хаотических сигналов, в то время как амплитуды этих сигналов остаются не связанными друг с другом и выглядят хаотическими [6].

В работе [10] было показано, что в связанных хаотических системах Ресслера в зависимости от величины расстройки управляющих параметров эти режимы ведут себя по-разному. Если параметры взаимодействующих систем расстроены относительно слабо, режим обобщенной синхронизации оказывается сильнее фазовой, в то время как при достаточно больших значениях расстройки параметров взаимодействующих систем пороговое значение параметра связи, соответствующее установлению фазовой синхронизации, существенно превосходит последнее для режима обобщенной синхронизации. В этом случае критическое значение параметра связи, соответствующее установлению обобщенной синхронизации, практически не зависит от величины расстройки между системами [11,12], а возникновение/разрушение фазовой синхронизации сопровождается появлением/потерей фазовой когерентности хаотического аттрактора одной из взаимодействующих систем [13,14].

Позднее в работах [15,16] были объяснены причины такого поведения границ возникновения синхронных режимов и выявлены физические механизмы, приводящие к их установлению. В частности, установлено, что в области относительно слабых значений расстройки собственных частот взаимодействующих систем Ресслера обобщенная синхронизация возникает за счет синхронизации основной спектральной компоненты и ее субгармоник (фазовая синхронизация в данном случае возникает по сценарию захвата собственных частот взаимодействующих систем), в то время как в области относительно больших значений частотной расстройки установление обобщенной синхронизации сопровождается синхронизацией двух спектральных компонент, соответствующих собственной частоте ведущей системы и основной частоте ведомой системы.

В данной работе проводится исследование характера расположения границ обобщенной и фазовой синхронизации в системе двух однонаправлено связанных генераторов на туннельном диоде [13]. Данная модель в безразмерном виде описывается следующей системой

дифференциальных уравнений:

$$\begin{aligned} \dot{x}_{d} &= \omega_{d}^{2}(hx_{d} + y_{d} - z_{d}), \\ \dot{y}_{d} &= -x_{d}, \\ \dot{z}_{d} &= (x_{d} - f(z_{d}))/\mu, \\ \dot{x}_{r} &= \omega_{r}^{2}(h(x_{r} - \varepsilon(y_{d} - y_{r})) + y_{r} - z_{r}), \\ \dot{y}_{r} &= -x_{r} + \varepsilon(y_{d} - y_{r}), \\ \dot{z}_{r} &= (x_{r} - f(z_{r}))/\mu, \end{aligned}$$

$$(1)$$

где в качестве безразмерной характеристики нелинейного элемента $f(\xi)$ использовалась зависимость $f(\xi) = -\xi + 0.002 \text{sh}(5\xi - 7.5) + 2.9$, h = 0.2, $\mu = 0.1$ — управляющие параметры, ε — параметр связи. Управляющий параметр ведомой системы $\omega_r = 1.02$, характеризующий основную частоту колебаний, был фиксирован, а аналогичный параметр ведущей системы ω_d варьировался в диапазоне от 0.94 до 1.12 для того, чтобы задать расстройку взаимодействующих осцилляторов. При указанных значениях управляющих параметров h, μ , ω_r во всем диапазоне значений параметра ω_d хаотические аттракторы обеих систем в отсутствие связи являются фазово-когерентными [13].

На рис. 1 показано расположение границы возникновения режима обобщенной синхронизации, фазовой синхронизации и границы фазовой когерентности системы двух связанных хаотических осцилляторов (1) на плоскости управляющих параметров (ω_d , ε). Линия 1 соответствует границе установления режима фазовой синхронизации, линия 2 границе установления режима обобщенной синхронизации, а линия 3 границе возникновения/потери фазовой когерентности хаотическим аттрактором ведомой системы. Порог возникновения обобщенной синхронизации определялся с помощью вычисления условных ляпуновских экспонент для системы (1) и уточнялся с помощью метода вспомогательной системы. Для определения момента потери/возникновения фазовой когерентности хаотического аттрактора ведомой системы была вычислена мера когерентности [14] при изменении параметра связи. Наличие фазовой синхронизации определялось выполнением условия захвата фаз. Мгновенная фаза хаотического сигнала вводилась традиционным способом как угол поворота на плоскости (x, y).

Рис. 1. Границы возникновения режима обобщенной синхронизации (GS), фазовой синхронизации (PS) и граница фазовой когерентности (CM) для двух однонаправленно связанных генераторов на туннельном диоде (1) на плоскости управляющих параметров (ω_d , ε).

Из рис. 1 видно, что границы возникновения синхронных режимов являются принципиально асимметричными относительно линии $\omega_d = \omega_r$, что обусловлено сильным влиянием диссипации в ведомой системе при увеличении параметра связи. В то же самое время порог возникновения режима обобщенной синхронизации при малых расстройках взаимодействующих систем оказывается существенно выше, чем при больших. Однако такая особенность наблюдается только для значений $\omega_d > \omega_r$, в то время как в области $\omega_d < \omega_r$ имеет место слабая зависимость порогового значения установления синхронного режима от параметра ведущей системы. В то же самое время и слева, и справа от $\omega_d = \omega_r$ в области относительно больших значений расстройки собственных частот разрушение фазовой синхронизации происходит через потерю фазовой когерентности хаотического аттрактора (рис. 1, линии 3). Однако пороговое значение параметра связи, соответствующее установлению фазовой синхронизации в области относительно больших значений расстройки собственных частот при $w_d < \omega_r$, ока-

зывается существенно ниже, чем для той же величины расстройки справа от $\omega_d = \omega_r$. Оно соответствует тем значениям параметра связи, при которых режим фазовой синхронизации реализуется в области относительно слабых значений частотной расстройки в случае, если $\omega_d > \omega_r$.

Объяснить причины такого поведения границ обобщенной и фазовой синхронизации на плоскости параметров (ω_d, ε) можно следующим образом. Понятно, что в области относительно слабых значений расстройки собственных частот ($\omega_d \in [0.98, 1.04]$), где разрушение фазовой синхронизации происходит без потери фазовой когерентности хаотического аттрактора ведомой системы, также как и в случае систем Ресслера, фазовая синхронизация возникает за счет захвата основных частотных компонент ведущей и ведомой систем, в то время как режим обобщенной синхронизации обусловлен синхронизацией основной спектральной компоненты ведомой системы и ее субгармоник [15,16]. В области $\omega_d > 1.04$ наблюдается поведение, аналогичное последнему для однонаправлено связанных систем Ресслера в случае относительно больших значений расстройки собственных частот: ниже границы фазовой синхронизации хаотический аттрактор ведомой системы (1) становится фазово-некогерентным, что и приводит к разрушению режима фазовой синхронизации. Кроме того, как нетрудно видеть из рис. 1, границы обобщенной синхронизации в области относительно больших значений расстройки частот и линии возникновения/потери фазовой когеретности хаотического аттрактора оказываются близки к друг к другу. Понятно, что в данном случае обобщенная синхронизация возникает за счет синхронизации двух четко выраженных спектральных компонент (на частотах ведущей и ведомой систем), интенсивности которых вблизи порога обобщенной синхронизации примерно совпадают.

Значительно интереснее обстоит дело с областью больших расстроек, где $\omega_d < 0.98$. Возникновение/разрушение режима фазовой синхронизации в этом случае по-прежнему связано с появлением/потерей фазовой когерентности хаотического аттрактора ведомой системы, в то время как соотношение режимов обобщенной и фазовой синхронизации аналогично последнему в случае относительно слабых значений расстройки собственных частот. Более того, граница обобщенной синхронизации в этом случае примерно в два раза превосходит пороговое значение параметра связи, соответствующее установлению режима обобщенной синхронизации при $\omega_d > 1.04$, и практически не зависит от

Рис. 2. Фурье-спектры ведомой системы (1) при различных значениях параметра связи: $1 - \varepsilon = 0$; $2 - \varepsilon = 0.04$; $3 - \varepsilon = 0.05$; $4 - \varepsilon = 0.06$; $5 - \varepsilon = 0.1$. Значение параметра ведущей системы $\omega_d = 0.96$.

значения $\omega_d < 0.98$. Понятно, что механизм возникновения обобщенной синхронизации в данном случае должен быть иным.

Исследуем взаимосвязь между режимами обобщенной и фазовой синхронизации, а также возникновением/потерей фазовой когерентности хаотического аттрактора в этой области более детально. Зафиксируем параметр ведущей системы $\omega_d = 0.96$. При выбранных значениях управляющих параметров в системе двух однонаправлено связанных генераторов на туннельном диоде (1) при увеличении параметра связи происходит следующее: при $\varepsilon = \varepsilon_{CM} = 0.048$ аттрактор ведомой системы теряет фазовую когерентность, при $\varepsilon = \varepsilon_{PS} = 0.075$ возникает режим фазовой синхронизации, при $\varepsilon = \varepsilon_{GS} = 0.175$ реализуется режим обобщенной синхронизации.

На рис. 2 приведены фурье-спектры сигнала с ведомой системы при различных значениях параметра связи. Видно, что при увеличении параметра связи интенсивность спектральной компоненты на частоте ведомой системы уменьшается, а на частоте ведущей системы увеличивается. При этом происходит сдвиг основной частоты колебаний ведомой системы в сторону меньших значений параметра связи, а

так как $\omega_d < \omega_r$, при некотором значении параметра связи (когда интенсивность спектральной компоненты на частоте ведущей системы в спектре ведомой системы станет значительной) произойдет захват основных частот взаимодействующих систем, а следовательно, установление фазовой синхронизации. Ниже порога возникновения фазовой синхронизации из-за наличия двух спектральных компонент в спектре ведомой системы ее аттрактор будет фазово-некогерентным. Однако возникновение фазовой синхронизации будет реализовано по сценарию, характерному для случая относительно слабых значений расстройки собственных частот. Действительно, уже при $\varepsilon = 0.1$ в фурье-спектре ведомой системы присутствует одна четко выраженная спектральная компонента на частоте ведущей системы. Понятно, что режим обобщенной синхронизации в данном случае будет возникать также по сценарию, характерному для относительно малых значений расстройки собственных частот: возникновение этого режима обусловлено синхронизацией основной спектральной компоненты ведущей системы и ее субгармоник.

Таким образом, в данной работе рассмотрен вопрос о возникновении обобщенной синхронизации в системе двух однонаправленно связанных генераторов на туннельном диоде. Показано, что возникновение режима обобщенной синхронизации в случае относительно сильно расстроенных параметров возможно по сценарию, характерному для относительно слабых значений расстройки собственных частот. При помощи анализа трансформации спектрального состава сигнала с ведомой системы объяснен характер расположения границы установления синхронного режима в исследуемой системе, а также его взаимосвязь с режимом фазовой синхронизации.

Работа выполнена при поддержке ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009–2013 годы.

Список литературы

- [1] Boccaletti S., Kurths J., Osipov G.V., Valladares D. L., Zhou C.S. // Physics Reports. 2002. V. 366. P. 1–100.
- [2] Короновский А.А., Москаленко О.И., Храмов А.Е. // УФН. 2009. Т. 179. № 12. С. 1281–1310.
- [3] Glass L. // Nature. 2001. V. 410. N 6825. P. 277-284.
- 4^{*} Письма в ЖТФ, 2011, том 37, вып. 23

- [4] Трубецков Д.И., Короновский А.А., Храмов А.Е. // Изв. вузов. Радиофизика. 2004. Т. XLVII. № 5-6. Р. 305-331.
- [5] Rulkov N.F., Sushchik M.M., Tsimring L.S., Abarbanel H.D.I. // Phys. Rev. E. 1995. V. 51. N 2. P. 980–994.
- [6] Pikovsky A.S., Rosenblum M.G., Kurths J. // Int. J. Bifurcation and Chaos. 2000.
 V. 10. N 10. P. 2291–2305.
- [7] Parlitz U., Junge L., Lauterborn W., Kocarev L. // Phys. Rev. E. 1996. V. 54 (2). 1996. P. 2115–2117.
- [8] Pyragas K. // Phys. Rev. E. 1997. V. 56 (5). P. 5183-5188.
- [9] Abarbanel H.D.I., Rulkov N.F., Sushchik M. // Phys. Rev. E. 1996. V. 53. N 5. P. 4528–4535.
- [10] Zheng Z., Hu G. // Phys. Rev. E. 2000. V. 62 (6). P. 7882-7885.
- Hramov A.E., Koronovskii A.A., Moskalenko O.I. // Europhysics Letters. 2005.
 V. 72. N 6. P. 901–907.
- [12] Короновский А.А., Москаленко О.И., Храмов А.Е. // Письма в ЖТФ. 2006. Т. 32. В. 3. С. 40–48.
- [13] Короновский А.А., Куровская М.К., Москаленко О.И., Храмов А.Е. // ЖТФ. 2007. Т. 77. В. 1. С. 21–29.
- [14] Hramov A.E., Koronovskii A.A., Kurovskaya M.K. // Phys. Rev. E. 2007. V. 75. P. 036205.
- [15] Короновский А.А., Москаленко О.И., Храмов А.Е. // Радиотехника и электроника. 2007. Т. 52. № 8. С. 949–960.
- [16] Москаленко О.И. // ЖТФ. 2010. Т. 80. В. 8. С. 1-7.