03;04 Подавление сильных автоколебаний ударных волн электрическим разрядом

© В.М. Фомин, Б.В. Постников, К.А. Ломанович

Институт теоретической и прикладной механики им. С.А. Христиановича, Новосибирск E-mail: fomin@itam.nsc.ru

_ _

Поступило в Редакцию 18 февраля 2011 г.

Экспериментально получены данные о подавлении сильных автоколебаний фронтов ударных волн, возникающих при натекании сверхзвуковой струи на сплошную и проницаемую преграду конечных размеров, воздействием электрического разряда на периферии струи.

За последнее десятилетие работам по магнитоплазменному управлению высокоскоростными потоками уделено много внимания [1]. Акцент в этих исследованиях в той или иной степени сделан на снижение сопротивления тел и на развитие новых способов управления потоками. В то же время существуют технологические процессы, в которых основным элементом выступает именно сверхзвуковой поток (струя). Традиционно в таких устройствах стараются избегать неустойчивых режимов работы, особенно связанных с сильными осцилляциями ударных волн. Тем не менее возможность работы и управления нестационарными процессами может оказаться интересной с технической точки зрения и позволит лучше понять физические механизмы развития и существования неустойчивых режимов. В работе в качестве объекта исследования рассматривается ударное натекания сверхзвукого потока на преграду конечных размеров. Известно, что такие течения при определенных газодинамических параметрах обладают свойством перехода стационарной ударно-волновой картины течения в сильно нестационарную, когда колебания фронтов ударных волн могут достигать амплитуды, сравнимой с выходным сечением сопла. Исследования натекания сверзхвуковой струи на конечную и бесконечную преграду ведуются начиная с 60-х годов [2-4]. Однако физика и механика возникновения сильных автоколебаний изучена не полностью. В последние годы активно исследуется влияние электрических разрядов на внутренние

84

характеристики свободной струи [5,6]. В качестве инструмента воздействия на высокоскоростной поток авторами был выбран электрический разряд, инициируемый на границе натекающей на плоскую преграду сверхзвуковой струи. В предыдущих исследованиях [7] было показано, что электрическим разрядом, инициированным на периферии струи, возможно изменить частоту колебаний фронтов ударных волн.

Экспериментальная установка представляет собой аэродинамическую сверхзвуковую трубу периодического действия с выхлопом в вакуумную емкость. Воздух атмосферного давления из помещения, где расположена установка, поступает в профилированное сопло Лаваля, что позволяет снизить возмущения потока на входе в сопло. На выходе из сопла, вблизи его кромки, симметрично размещались два электродных узла таким образом, что горящий разряд (дуга низкого давления) не перекрывал сверхзвуковой поток. В экспериментах использовалась трехэлектродная схема: два стержневых электрода на кромках сопла и центральный медный кольцевой электрод, сквозь который проходил поток. Инициирование разряда обеспечивалось закороткой разрядного промежутка. Типичное напряжение каждого из двух инициированных разрядных промежутков 30 V при установлении тока в пределах 50-70 А. Торможение потока на цилиндрической преграде приводило к образованию осциллирующих фронтов ударных волн. Для визуализации течения импактной сверзхвуковой струи использовалась теневая схема с применением адаптивного визуализирующего транспаранта — ABT [8], в качестве фотоприемника — скоростная камера PCO 1200 hs с частотой регистрации до 10 тыс. кадров в секунду (в режиме линейки пикселов до 24 тыс. кадров в секунду). По результатам скоростной визуализации было установлено, что колебания с большим амплитудным размахом имеют периодический характер — это автоколебания.

Газодинамические режимы с сильными осцилляциями фронтов для сплошной преграды представлены на рис. 1, как зависимости частоты и амплитуды колебаний от относительного удаления преграды от кромки сопла. Частоты колебаний хорошо укладываются в диапазон 1-2 kHz. В то же время амплитуды существенно выше для чисел Маха M = 3.0 и M = 3.25 (режим сильных автоколебаний). Эксперименты с разрядом проводились соответственно на соплах с M = 3.0 и M = 3.25. Струя в этом случае оказывается перерасширенной и наблюдается небольшое схождение границ струи к оси симметрии. На рис. 2 приведены четыре шлирен-снимка, демонстрирующие последовательность смены

Рис. 1. Частота F(a) и относительная амплитуда A/D(b) колебаний головной ударной волны для сплошной преграды относительным диаметром d/D = 1.2. Цифрами 1-6 обозначены режимы с инициированием электрического разряда.

ударно-волновой картины течения при инициировании электрического разряда вблизи границы осциллирующей струи. Видно, что инициирование разряда позволяет подавить режим автоколебаний. Время реакции

Рис. 2. Визуализация подавления автоколебаний фронтов ударных волн инициированием электрического разряда на границе струи. Сплошная преграда: M = 3.0; d/D = 1.2; h/D = 1.2. a — режим с сильными автоколебаниями; b — подавление автоколебаний инициированием разряда; c — режим без автоколебаний; d — восстановление режима с сильными автоколебаниями.

потока на присутствие разряда не превышает 50 ms. В ряде случаев отмечена "мгновенная" реакция потока, менее 1 ms. При выключении разряда автоколебания восстанавливаются не сразу, а с некоторой

задержкой (рис. 2, c), причем время задержки больше реакции потока на разряд — до 200 ms.

Схожие результаты по подавлению сильных автоколебаний были получены на преградах, выполненных из высокопористого ячеистого материала (ВПЯМ). Этот пространственный сетчато-ячеистый материал получают при дублировании высокопористой структуры сетчато-ячеистого полимера, например пенополиуретана, методами порошковой металлургии [9]. В экспериментах использовалась ВПЯМ-преграда из никеля относительным диаметром d/D = 2.8, где *d* — диаметр преграды, *D* — диаметр сопла. Преграда фисксировалась в кольцевом пилоне. Были исследованы преграды с количеством пор на дюйм: $\phi = 10, 20$ и 30. Автоколебательный режим получен на преграде с $\phi = 30$ на относительном удалении h/D = 0.4, при числе Маха M = 3.25. Относительная амплитуда и частота автоколебаний составили A/D = 0.47 и F = 1.3 kHz. На больших удалениях и меньших ф автоколебания не наблюдались. Особенностью обтекания ВПЯМ-преград является более близкое расположение фронтов прямых ударных волн к торцу преграды. Геометрия разрядного промежутка и характеристики источника питания соответствовали описанным выше. При инициировании электрического разряда также удалось подавить автоколебательный процесс и получить стационарную картину течения, аналогичную показанной на рис. 2, b.

Таким образом, впервые получены экспериментальные данные о возможности подавления сильных автоколебаний сверхзвуковой струи, натекающей на сплошную преграду и преграду из ВПЯМ, инициированием электрического разряда.

Работа выполнена при поддержке программы президиума РАН (проект № 11/11) и интеграционного проекта СО РАН № 80.

Список литературы

- [1] Материалы Международных совещаний по магнитоплазменной аэродинамике. М.: ОИВТ РАН, 1999–2010.
- [2] Голубков А.Г., Козъменко Б.К., Остапенко В.А., Солотчин А.В. // Изв. СО АН СССР. Сер. техн. науки. 1972. № 13. В. 3. С. 52.
- [3] Дулов В.Г., Лукьянов Г.А. Газодинамика процессов истечения. Новосибирск: Наука, 1984. 230 с.
- [4] Глазнев В.Н., Запрягаев В.И., Усков В.Н. и др. Струйные и нестационарные течения в газовой динамике. Новосибирск: Изд-во СО РАН, 2000. 200 с.

- [5] Utkin Y.G., Keshav S., Kim J.-H. et al. // J. Phys. D: Appl. Phys. 2007. V. 40. N 3. P. 685.
- [6] Kearney-Fischer M., Kim J.-H., Samimy M. // AIAA Paper 2010-4418.
- [7] Fomin V.M., Lomanovich K.A., Postnikov B.V. // AIAA Paper 2010-4887.
- [8] Бойко В.М., Оришич А.М., Павлов А.А., Пикалов В.В. Методы оптической диагностики в аэрофизическом эксперименте. Новосибирск, 2009. 450 с.
- [9] Анциферов В.Н., Макаров А.М., Остроушко А.А. Проблемы порошкового материаловедения. Ч. VII. Высокопористые проницаемые ячеистые материалы — перспективные носители катализаторов. Екатеринбург: УрО РАН, 2006. 227 с.