03;04 Перераспределение компонентов газовой фазы в процессе искрового разряда

© А.М. Орлов, И.О. Явтушенко, Д.С. Боднарский

Ульяновский государственный университет E-mail: OrlovAM@ulsu.ru, yavigor@mail.ru

Поступило в Редакцию 31 января 2011 г.

Исследовалось изменение состава газовой фазы в замкнутом объеме в процессе искрового разряда. Получены уравнения кинетики протекающих процессов, позволившие рассчитать реальные изменения парциальных давлений значимых компонентов при плазмохимическом взаимодействии. Определены константы скоростей основных реакций, сопутствующих плазменному разряду в замкнутом объеме в воздушной атмосфере.

Как известно [1], плазменный (в том числе искровой) разряд в газовой атмосфере содействует многокомбинационному возбуждению и ионизации атомов, молекул и ионов. Это способствует образованию новых устойчивых молекул и молекулярных ионов [2], существенно изменяющих внутренние параметры и общий характер развития процессов ионизации. Особенно отчетливо это проявляется в замкнутом объеме, где количественная и качественная трансформация исходных компонентов во вновь образуемые молекулы приводит к радикальным изменениям не только молекулярного состава газовой фазы, но и механизма плазменного разряда. Наглядным проявлением этого может служить неустойчивость объемного разряда в отпаянных СО₂-лазерах, где благодаря накоплению продуктов плазменных реакций объемный разряд трансформируется в искровой [3].

Плазмохимические процессы, реализуемые в замкнутом объеме, широко применяются на практике [4,5]. Это детекторы заряженных частиц, ионизационные камеры, искровые счетчики, форкамеры больших давлений, где при мощном электрическом разряде под воздействием большого количеста тепла, выделяемого в разрядном промежутке, среда превращается в ионизированный газ с высоким давлением ($\sim 60 \text{ MN/m}^2$).

Несмотря на практическую значимость, многие аспекты рассматриваемых явлений остаются невыясненными. Так, нуждается в прора-

25

Рис. 1. Принципиальная схема установки манометрического измерения давления при плазменном разряде.

ботке кинетика многокомпонентной газовой фазы в процессе искрового разряда. Требует пристального изучения и многоступенчатость плазмохимических реакций. Не встречено нами работ, описывающих изменение парциальных давлений компонентов газовой фазы (исходных и нарабатываемых) в процессе искрового разряда. Поэтому в настоящей работе предпринята попытка экспериментального и теоретического изучения кинетики развиваемых процессов, реализуемых в условиях искрового разряда в замкнутом объеме.

Исследования проводились в ячейке, схематично представленной на рис. 1. Кварцевая труба с внутренним диаметром Ø 15.2 и длиной 58 mm герметизировалась резиновыми пробками с вольфрамовыми электродами Ø 2 mm. Межэлектродный зазор соответствовал 2 mm. К электродам подключалась конденсаторная батарея (в дальнейшем "конденсатор" с предельным рабочим напряжением 20 kV) емкостью $7.5 \cdot 10^{-3} \mu$ F с регулируемым блоком питания. Ячейка через боковой штуцер подклю-

чалась к водяному манометру с ценой деления 1 mm (0.978 Pa). Частота искрового разряда фиксировалась радиотехническими средствами с выводом информации на цифровой запоминающий осциллограф С-9-8.

Сущность проводимых исследований заключалась в регистрации частоты искрового разряда f и изменения далвения ΔP в процессе длительного 5-часового плазменного возбуждения. Стартовый объем V_0 рабочей системы¹ (в дальнейшем — "ячейка") предварительно оценивался по объему заполняющей ее дистиллированной воды.

Другой вариант определения этого параметра связан с добавлением контролируемого количества дистиллированной воды $V_{\rm H_2O}$ в правое плечо манометра при закрытом кране 5:

$$V_0 = \Delta V \left(1 + \frac{P_0}{\Delta P} \right) - \frac{V_{\rm H_2O}}{2},\tag{1}$$

где $\Delta V = S \cdot h_{21}$ и $\Delta P = pgh_{42}$ — изменение объема ячейки и давления в ней, ρ — плотность H₂O при комнатной температуре, g = 9.81 m/s², $S = 2.5295 \cdot 10^{-5}$ m² — площадь поперечного сечения трубок манометра, $h_{21} = h_2 - h_1$ и $h_{42} = h_4 - h_2$ (см. рис. 1).

Содержащиеся в атмосфере кислород (20.95 vol.%) и азот (78.09 vol.%) являются основными компонентами [6], определяющими стартовое давление в ячейке. Зная их парциальное давление, нетрудно рассчитать и локализованное число молей этих компонентов на старте искрового разряда:

$$v_{j0} = P_{j0} \cdot V_0 / RT, \tag{2}$$

где подстрочный индекс j = 1 соответствует кислороду, j = 2 — азоту, "0" — старту искрового разряда. После просушки система подключалась к источнику питания, и начинался искровой разряд, сопровождаемый стремительным изменением давления в ячейке $\Delta P(t)$. Сохраняя общую тенденцию этих изменений (рис. 2), кривая $\Delta P(t)$ могла сильно растягиваться или сжиматься вдоль оси абсцисс в зависимости от V_0 . Ячейки с большими значениями V_0 всегда способствовали более медленному изменению давления. После снятия напряжения (t = 300 min) $\Delta P(t)$ в ячейке быстро спадало до стационарного значения. Этот перепад давлений использовался для оценки истинной

¹ Результирующий объем системы V_i представлен рабочим объемом кварцевой трубки, внутренним объемом вакуумного шланга (внутренний $\varnothing 2 \,\mathrm{mm}$) и свободным объемом правого плеча манометра.

Рис. 2. Влияние искрового разряда на изменение давления в закрытой емкости. Точки — эксперимент, линия — результат расчета $\Delta P(t)$. На вставке отражены фрагменты старта искрового разряда (1) и финиша опыта после снятия напряжения (2).

температуры в объеме ячейки, оцениваемый очевидным уравнением

$$T_2 = T_1 \left(1 - \frac{\Delta P}{P_1} - \frac{\Delta V}{V_1} + \frac{\Delta P \cdot \Delta V}{P_1 \cdot V_1} \right)$$

или

$$\Delta T = T_1 \left(\frac{\Delta P}{P_1} + \frac{\Delta V}{V_1} - \frac{\Delta P \cdot \Delta V}{P_1 \cdot V_1} \right),\tag{3}$$

где $\Delta T = (T_1 - T_2) = 0.24 \,\mathrm{K}$ — перепад температуры между начальным (300 min) и конечным (350 min) значениями *t*.

Обращает на себя внимание (см. кривую 1 на вставке рис. 2) старт искрового разряда с явно выраженным экстремальным изменением $\Delta P(t)$ при $t_{\text{max}} \approx 1 \text{ min.}$ Разрядный старт, как и его финиш, при $U_c = \text{const}$ всегда сопровождается мгновенным, одинаковым по величине изменением давления на $(12 \pm 1; 11.7 \pm 0.3 \text{ Pa})$, вызванным появлением (t = +0) или исчезновением (t = 300 min) высокотемпературной (~ 10000 К) микрозоны, локализованной в канале искрового разряда. На участке роста $\Delta P(t)$ определяется режимом установления теплового баланса ячейки с внешней атмосферой. Однако конкурирующие с ΔT плазмохимические процессы снижают давление в ячейке, способствуя экстремальному характеру изменения $\Delta P(t)$ на старте искрового разряда. Таким образом, на начальной стадии искрового разряда протекают два конкурирующих процесса. Первый из них связан с ростом температуры (следовательно, и ΔP), достигающей постоянного значения после первых минут поляризации, второй — с переработкой основных компонентов газовой фазы (N2 и O2) в конечные продукты плазмохимической реакции, приводящей к общему снижению числа молей газовой фазы. Вполне очевидно, что вскрытие кинетических особенностей этих явлений даст важную информацию не только о скорости переработки исходных и накопленных новых компонентов, но и расширит представления об обменных процессах между плазменным шнуром и окружающим его пространством.

В плазме искрового разряда, реализуемого в воздушной атмосфере, происходит активная наработка нитридов. Из всего набора необратимо протекающих реакций доминирующими², очевидно, являются лишь три из них с соответствующими значениями констант скоростей k_i :

$$O_2 + N_2 \xrightarrow{k_1} 2NO, \tag{4}$$

$$2NO + O_2 \xrightarrow{k_2} 2NO_2, \tag{5}$$

$$2NO_2 \xrightarrow{k_3} N_2O_4. \tag{6}$$

Видно, что мы имеем дело с последовательно протекающими реакциями, сущность которых заключается в наличии промежуточных

 $^{^2}$ Суммарное парциальное давление других компонент сухого воздуха (< 1%) и паров воды (< 3%), оцениваемых по влажности, незначительно и входит в оцениваемую погрешность.

стадий: NO \rightarrow NO₂ \rightarrow N₂O₄. С другой стороны, происходит параллельное поглощение O₂ нарабатываемой моноокисью NO (5).

Скорость протекания каждого из рассматриваемых процессов может быть представлена через любой исходный компонент [7]. Учитывая это, напишем дифференциальные уравнения скоростей реакций (4)–(6), предварительно введя дополнительные обозначения.

Пусть на старте плазменного разряда (t = 0) в ячейке имеется n_{10} кислорода O_2 и n_{20} азота N_2 . Если к моменту времени t прореагирует $x = x_1 + x_2$ моль O_2 (x_1 по маршруту (4) и x_2 — по (5)), то непрореагировавшими останутся ($n_{10} - x$) моль O_2 и ($n_{20} - x_1$) моль N_2 . Последнее представление не должно вызывать сомнений, поскольку в (4) количество провзаимодействовавшего N_2 в точности соответствует переработанному в моноокись кислороду x_1 . Учитывая это, запишем уравнение для скорости реакции (4):

$$-\frac{d(n_{10} - x_1)}{Vdt} = k_1 \cdot \underbrace{\frac{(n_{10} - x)}{V}}_{Q_2} \cdot \underbrace{\frac{(n_{20} - x_1)}{V}}_{N_2}$$

или

$$\frac{dx_1}{dt} = \frac{k_1}{V} \underbrace{(n_{10} - x)}_{O_2} \cdot \underbrace{(n_{20} - x_1)}_{N_2}.$$
(7)

Уравнение (7) представляет собою уравнение скорости необратимой реакции (4) второго порядка с константой скорости k_1 .

Из (4) следует, что в результате плазменной переработки число молей наработанной NO соответствует $2x_1$. Если в результате последовательно протекающей реакции (5) к моменту времени *t* из всего наработанного по (4) $2x_1$ моль NO прореагирует лишь некоторая ее часть (у моль NO), то быстрота удаления моноокиси должна быть представлена уравнением

$$\frac{d(2x_1 - y)}{dt} = \frac{2k_1}{V} \left(n_{10} - x \right) \cdot \left(n_{20} - x_1 \right) - \frac{k_2}{V} \left(n_{10} - x \right) \cdot (2x_1 - y)^2.$$
(8)

Здесь параллельные каналы выжигания кислорода по маршрутам (4) и (5) представлены параметром $x = x_1 + x_2$, а последовательность протекающих процессов учитывает во втором маршруте (см. (5) и (8)) частичную переработку моноокиси $2x_1$, полученную по первому маршруту (4). По определению, соотношение (8) описывает и скорость

связывания кислорода dx_2/dt в (5). При этом количество нарабатываемой двуокиси азота NO₂ соответствует прореагировавшей NO (*y* моль) и вдвое выше переработанного в (5) кислорода (0.5 *y*).

Описываемый здесь процесс (5) относится к реакции третьего порядка, который на практике не реализуется. Причина этого заключается в том, что реагируют только те молекулы, которые сталкиваются, а вероятность одновременного столкновения трех молекул, особенно если концентрация некоторых из них незначительна (NO на старте и O_2 на финише), чрезвычайно мала. Поэтому порядок таких реакций понижается вплоть до первого и может принимать дробные значения. Скорость такого процесса определяется компонентом меньшей концентрации.

Наконец, последняя представленная здесь последовательная реакция (6) связана с переработкой NO₂ в N₂O₂. Если из у наработанной в (5) NO₂ прореагирует в (6) лишь z молей этого же компонента, то скорость протекания процесса может быть описана очевидным уравнением

$$\frac{d(y-z)}{dt} = \frac{k_2}{V} (n_{10} - x) \cdot (2x_1 - y)^2 - \frac{k_3}{V} \cdot z^2.$$
(9)

Уравнения (7)–(9) представлены четырьмя неизвестными: x_1 , x_2 , y и z. Недостающее четвертое уравнение м.б. получено на базе измеряемого в ячейке давления, которое в процессе плазменного разряда контролируется числом молей исходных и конечных продуктов газовой фазы $\Delta P = \Delta n \cdot RT/V$.

Определимся с числом компонентов, определяющих давление. Оценку будем проводить с учетом последовательности реакций (4)–(6). Процесс, протекающий по первому маршруту (4), не дает никаких изменений в мольном соотношении компонентов, следовательно, и давления, поскольку количество переработанных исходных продуктов O₂ (x_1) и N₂ (x_1) в точности соответствует наработанной моноокиси (2 x_1).

В отличие от первого, второй (5) и третий (6) маршруты приводят к снижению числа молей газовой фазы на x_2 и 0.5 z молей соответственно. После подведения баланса получим недостающее уравнение:

$$\Delta n(t) = -x_2 - 0.5 z = 0.5(-y - z)$$
 или $\Delta P \cdot V/RT = -0.5(y + z).$ (10)

Здесь учтено, что стехиометрические коэффициенты левой части (5) связаны соотношением $x_2 = 0.5y$.

Рис. 3. Изменение парциального давления P_j реагирующих при искровом разряде веществ $(1 - N_2, 2 - O_2, 3 - NO, 4 - NO_2)$ для последовательных реакций (4), (5).

Система уравнений (7)-(9) и (10) не поддается аналитическому решению, поэтому она решена нами численным методом. Наилучшая согласованность экспериментальных и расчетных данных фиксируется только при конкретных значениях k_1 , k_2 и определенном порядке реакции (5). Что касается последнего маршрута (6), то этот процесс оказывается не чувствительным к k_3 и вклад этой реакции в общем изменении ΔP ничтожен. Таким образом, наработки N₂O₄ в процессе опыта не происходит. Результаты расчета характера изменения парциальных давлений исходных и нарабатываемых компонентов газовой фазы в процессе искрового разряда представлены на рис. 3. В таблицу

Расчетные параметры химических реакций

сведены вычисленные значения констант соответствующих реакций плазменного превращения.

Анализ представленных на рис. 3 данных показывает, что кислород за время проведения опыта выжигается практически полностью (95.24%), в то время как парциальное давление азота снижается лишь на 0.98%. Высокая по сравнению с азотом интенсивность поглощения кислорода — это результат параллельно протекающих реакций, нарабатывающих моноокись (4) и двуокись (5) азота. Именно этот процесс несет основную ответственность за экстремальное изменение парциального давления азота, несмотря на непрерывное его связывание кислородом. Действительно, в первые 50 минут плазменной обработки (рост ΔP азота) быстрое уменьшение объема системы определяется активным сжиганием кислорода по параллельной схеме. При этом концентрация азота, как и его давление, несмотря на уменьшение числа его молей (см. вставку на рис. 3), возрастает. К моменту достижения экстремального значения четверть кислорода успевает выгореть и доминирующий контроль над преобразующими процессами все больше смещается в пользу первой реакции, что подтверждается более быстрым накоплением моноокиси в рассматриваемом процессе по сравнению с NO₂ (рис. 3). При t > 50 min основная масса связываемого кислорода контролируется первой реакцией, обеспечивающей снижение концентрации азота $\Delta n_{\rm N_2}/\Delta V$, следовательно, и парциального давления этого компонента в ячейке.

Убыль O_2 и N_2 в значительной степени компенсируется наработкой новых соединений газовой фазы при искровом разряде. При этом, несмотря на последовательность развиваемых событий (NO \rightarrow NO₂), значительная часть наработанных NO и NO₂ оказывается невостребо-

ванной и их концентрации при наличии свободного кислорода непрерывно возрастают. Характерно, что диоксид азота является конечным продуктом многоступенчатого процесса, активизированного искровым разрядом. Трансформация NO₂ в N₂O₄ практически не происходит.

По порядку величин найденные нами значения k_j , представленные в 4 столбце таблицы, сильно занижены, поскольку оцениваются относительно общей продолжительности плазмохимической обработки. Между тем все рассматриваемые реакции активизируются только в небольшом объеме плазменного шнура, время существования которого ограничено $\sim 10^{-7}$ s [7]. Поэтому, при средней частоте разряда 11.8 Hz и быстро протекающих рекомбинационных процессах ($\Delta t \leq 10^{-6}$ s [8]), 99.99988% времени каждого периода система остается инертной. Отсюда реализуемые при искровых разрядах приближенные значения констант скоростей плазмохимических реакций (колонка 5 в таблице) должны быть в $10^6 - 10^7$ раз выше расчетных данных, представленных в колонке 5. К сожалению, мы не располагаем аналогичной хотя бы приближенной независимой количественной информацией других авторов, анализировавших искровой разряд.

Список литературы

- [1] Чернетский А.В. Введение в физику плазмы. М.: Атомиздат, 1969. 304 с.
- [2] Арискин Д.А., Швейгерт И.В. // ЖЭТФ. 2009. Т. 36. В. 4 (10). С. 818–828.
- [3] Mesyats G.A., Osipov V.V., Tarasenko V.F. Pulsed Gas Lasers. Billingham (Wash. USA): SPIE, 1995. 374 p.
- [4] Ломаев М.И., Скакун В.С., Сосни Э.А. и др. // УФН. 2003. Т. 41. В. 2. С. 201–217.
- [5] Александров В.В., Грибовский Г.Г., Зукакишвили Г.Г. н др. // ЖЭТФ. 2003.
 Т. 124. В. 4 (10). С. 829–839.
- [6] Физический энциклопедический словарь / Гл. ред. А.М. Прохоров. Ред. кол. Д.М. Алексеев, А.М. Бонч-Бруевич, А.С. Боровик-Романов и др. М.: Сов. энциклопедия, 1983. 928 с.
- [7] Орлов А.М., Явтушенко И.О., Чурилов М.В. // ПЖТФ. 2010. Т. 36. В. 13. С. 61–70.
- [8] Грановский В.Л. // Электрический ток в газе. Установившийся ток / М.: Наука, 1971. 543 с.