05

Ориентационная и температурная зависимость сверхэластичности в монокристаллах FeNiCoAlTa, обусловленной обратимыми $y-\alpha'$ -мартенситными превращениями

© И.В. Киреева, Ю.И. Чумляков, В.А. Кириллов, I. Karaman, E. Cesari

Сибирский физико-технический институт Томского государственного университета, Томск, Россия
E-mail: i.v.kireeva@mail.ru
Department of Mechanical Engineering, Texas A&M University,
TX 77843, USA
Universitat de les Illes Balears, Departament de Fisica,
E-07122 Palma de Mallorca, Spain

Поступило в Редакцию 12 января 2011 г.

Представлены результаты исследования обратимых термоупругих $\gamma-\alpha'$ -мартенситных превращений (МП) при охлаждении/нагреве и под нагрузкой в монокристаллах Fe-28%Ni-17%Co-11.5%Al-2.5%Ta (at.%). Показано, что выделение дисперсных частиц γ' -фазы размером $d\leqslant 5$ nm приводит к термоупругим $\gamma-\alpha'$ -МП с малым температурным гистерезисом $\Delta T=20$ K. Установлено, что в ориентации [001] достигаются максимальная величина сверхэластичности (СЭ) $\varepsilon_{SE}=6.8\%$, минимальные значения механического гистерезиса $\Delta\sigma=130$ MPa и большой температурный интервал СЭ $\Delta T_{SE}=130$ K. В ориентации [111], напротив, обнаружены малые значения $\varepsilon_{SE}=2.0\%$, высокие значения $\Delta\sigma=350-430$ MPa и узкий интервал $\Delta T_{SE}=55$ K.

Высокопрочные сплавы на основе железа с эффектом памяти формы $(\Im\Pi\Phi)$ и СЭ представляют особый интерес для практического примененения в качестве демпферов и сенсорных материалов в авиакосмической промышленности. Известно, что в сплавах на основе железа развиваются нетермоупругие МП из высокотемпературной ГЦК γ -фазы (ГЦК — гранецентрированная кубическая решетка) в α -мартенсит, имеющий ОЦК (ОЦК — объемоцентрированная кубическая решетка) или ОЦТ

(ОЦТ — объемоцентрированная тетрагональная решетка) решетку. Выделение дисперсных частиц γ' -фазы, атомно-упорядоченной по типу L12 и когерентно связанной с высокотемпературной фазой в сплавах на основе железа, приводит к изменению кинетики МП от нетермоупругой к термоупругой [1,2]. С обратимыми термоупругими $y-\alpha'$ -МП связаны ЭПФ и СЭ, которые были недавно обнаружены в текстурированных поликристаллах Fe-28%Ni-17%Co-11.5%Al-2.5%Ta-0.05%B (at.%) [3]. Впервые для поликристаллов сплавов на основе железа с острой текстурой $\langle 100 \rangle \{035\}$ и размером зерна $d < 400\,\mu\mathrm{m}$ при $\gamma - \alpha'$ -МП обнаружена СЭ $\varepsilon_{SE} = 13.6\%$ с аномально большими значениями механического гистерезиса $\delta \sigma = 550 \, \text{MPa}$, причина которого остается не выясненной. Поэтому целью настоящей работы является исследование термоупругих $\gamma - \alpha' - M\Pi$ и СЭ в монокристаллах сплава Fe-28%Ni-17%Co-11.5%Al-2.5%Ta (at.%) в зависимости от ориентации кристалла и температуры испытания при деформации растяжением. Исследования на монокристаллах необходимы для выяснения роли границ зерен в развитии $\gamma - \alpha'$ -МП под нагрузкой и установления ориентационной зависимости величины $\Delta \sigma$ и соответственно энергии ΔG_{dis} , рассеиваемой при $\gamma - \alpha'$ -МП.

Монокристаллы сплава Fe-28%Ni-17%Co-11.5%Al-2.5%Ta (at.%) выращивали в атмосфере гелия методом Бриджмена в тиглях из окиси магния. Старение проводили при T=973 K при различных временах t=0-25 h в атмосфере гелия с последующей закалкой водой. Температуры $\gamma-\alpha'$ -МП определяли по перегибам на кривой зависимости электросопротивления от температуры $\rho(T)$.

Экспериментально при исследовании зависимости $\rho(T)$ показано, что в закаленных кристаллах $\gamma-\alpha'$ -VG не наблюдается при изменении температуры от 373 до 77 К (рис. 1, кривая I). После старения при T=973 К и времени t<7 h $\gamma-\alpha'$ -МП также не обнаружено на кривой зависимости $\rho(T)$. Наконец, старение при t от 7 до 20 h приводит к развитию $\gamma-\alpha'$ -МП (рис. 1, кривые 2-5). Анализ полученных кривых $\rho(T)$ показывает, что старение при T=973 К в течение 7 h приводит к появлению термоупругого $\gamma-\alpha'$ -МП. Термоупругий характер $\gamma-\alpha'$ -МП доказывается, во-первых, in situ металлографическим исследованием поверхности кристаллов, когда при охлаждении на поверхности кристалла образуется α' -мартенсит, который полностью исчезнет при нагреве. Этому обратимому изменению структуры соответствует обратимое изменение $\rho(T)$ с небольшим температурным

Рис. 1. Зависимость электросопротивления от температуры для монокристаллов сплава Fe-28%Ni-17%Cr-11.5%Al-2.5%Ta (at.%) после различных термических обработок: I — закалка от 1523 K; 2 — старение при 973 K, 7h; 3 — старение при 973 K, 10 h; 4 — старение при 973 K, 15 h; 5 — старение при 973 K, 20 h.

гистерезисом $\Delta = A_f - M_s = 20\,\mathrm{K}$ ($A_f = 180\,\mathrm{K}$ — температура конца обратного $\gamma - \alpha'$ -МП при нагреве, $M_s = 160\,\mathrm{K}$ — температура начала прямого $\gamma - \alpha'$ -МП при охлаждении) (рис. 1, кривая 2). Во-вторых, $M_S < A_S$ (A_S — температура начала обратного $\gamma - \alpha'$ -МП при нагреве) и, следовательно, согласно [1], в кристалле накапливается упругая энергия

Рис. 2. Кривые $\sigma(\varepsilon)$ монокристаллов сплава Fe-28%Ni-17%Cr-11.5%Al-2.5%Ta (at.%) при деформации растяжением при $T=210\,\mathrm{K};~A_f=180\,\mathrm{K};~a$ — кристаллы [001], деформация после первого цикла; b — кристаллы [$\overline{1}11$].

 ΔG_{el} , которая не релаксирует из-за высокого уровня прочностных свойств высокотемпературной фазы. Это в свою очередь определяет малые значения гистерезиса $\Delta T=20\,\mathrm{K}$. В этом структурном состоянии $\Delta T=20\,\mathrm{K}$. В этом структурном состоянии $\Delta G_{el}>2\Delta G_{dis}$, что следует из термодинамического анализа МП [4]. Электронно-микроскопические исследования показали, что выделение при старении в течение 7 h мелких дисперсных частиц γ' -фазы размером 5 nm приводит к развитию термоупругих обратимых $\gamma-\alpha'$ -МП.

На рис. 2 представлены $\sigma(\varepsilon)$ -кривые при деформации растяжением монокристаллов [001] и [111] при $T=210\,\mathrm{K}$. Видно, что для обеих ориентаций наблюдаются замкнутые петли гистерезиса, типичные для сплавов, испытывающих термоупругие $\gamma-\alpha'$ -МП под нагрузкой. Величина механического гистерезиса $\Delta\sigma$, напряжения σ_{cr} для начала развития $\gamma-\alpha'$ -МП под нагрузкой, величина обратимой деформации ε_{SE} оказываются зависящими от ориентации кристалла и температуры испытания. В кристаллах [001] при $T=210\,\mathrm{K}$ напряжения σ_{cr} , необ-

Рис. 2 (продолжение).

ходимые для начала МП под нагрузкой, оказываются меньше, чем для кристаллов [$\overline{1}11$]. Максимальное значение СЭ в кристаллах [$\overline{1}11$] оказывается равным 2.0%, и эта деформация оказывается близкой к теоретически рассчитанным значениям деформации решетки $\varepsilon_0=2.1\%$, в кристаллах данной ориентации при $\gamma-\alpha'$ -МП [3]. В кристаллах [001] оценка дает $\varepsilon_0=8.7\%$, а максимальные экспериментальные значения СЭ при циклировании $\varepsilon_{SE}=6.8\%$. Необходимо подчеркнуть, что для сохранения сплошности образца его не деформировали больше 6.8%

Письма в ЖТФ, 2011, том 37, вып. 10

и, следовательно, максимальные значения ε_{SE} могут превышать 6.8%. Величина $\Delta\sigma$ в кристаллах [001] равна 130 MPa, что в 2.5—3 раза меньше, чем для кристаллов [$\overline{1}11$] ($\Delta\sigma[\overline{1}11]=350-430$ MPa) и для поликристаллов, где $\Delta\sigma=550$ MPa [3].

На рис. З представлены результаты исследований температурной зависимости напряжений $\sigma_{cr}(T)$, необходимых для начала $\gamma-\alpha'$ -МП под нагрузкой, температурного интервала СЭ ΔT_{SE} и механического гистерезиса $\Delta\sigma(T)$ для кристаллов [001] и [$\overline{1}11$] при растяжении в интервале температур T=173-373 К. Видно, что $\sigma_{cr}(T)$ возрастает с увеличением T-испытания, и эта зависимость оказывается близкой к линейной зависимости, вытекающей из термодинамического анализа развития МП под нагрузкой [5]:

$$\frac{d\sigma_{cr}(T)}{dT} = -\frac{\Delta H}{\varepsilon_0 T_0}. (1)$$

Здесь ΔH — изменение энтальпии при $\gamma - \alpha'$ -МП; ε_0 — деформация решетки, которая зависит от ориентации кристалла; T_0 — температура химического равновесия γ - и α' -фаз.

Используя соотношение (1), проведем сравнение экспериментальных и теоретических значений $\alpha=d\sigma_{cr}(T)/dT$ для кристаллов с осью растяжения [001] и [111], учитывая, что T_0 и ΔH не зависят от ориентации кристалла. Их рис. 3 определены экспериментальные значения $\alpha_{\rm exp}[111]=10.9\,{\rm MPa/K}$ и $\alpha_{\rm exp}[001]=3.5\,{\rm MPa/K}$ и их отношение $\alpha_{exp}[111]/\alpha_{\rm exp}[001]=3.1.$ Отношение теоретических величин $\alpha_{theory}[111]/\alpha_{tehory}[001]$ будет равно отношению $\varepsilon[001]/\varepsilon_0[111]=4.1$ ($\varepsilon_0[111]=2.1\%$ и $\varepsilon_0[001]=8.7\%$) [3], что следует из соотношения (1). Теоретически ожидаемое отношение величин $\alpha_{theory}[111]/\alpha_{theory}[001]$ оказывается близким к отношению экспериментально наблюдаемых величин $\alpha_{exp}[111]/\alpha_{exp}[001]$. Следовательно, ориентационная зависимость термоупругих $\gamma-\alpha'$ -МП под нагрузкой описывается соотношением Клапейрона—Клаузиуса [5].

Температурный интервал СЭ ΔT_{SE} в кристаллах [001] равен 130 K, а в [$\overline{1}11$] — 55 K. Величина механического гистерезиса $\Delta \sigma$ для кристаллов [001] при 193 K < T < 300 K не зависит от T — $\Delta \sigma$ = 130 MPa, а при T > 300 K возрастает до $\Delta \sigma$ = 200 MPa. В кристаллах [$\overline{1}11$] $\Delta \sigma$ увеличивается с ростом температуры от 350 MPa при T = 196 K до 430 MPa при T = 248 K.

Рис. 3. Температурная зависимость осевых напряжений σ_{cr} и механического гистерезиса $\Delta\sigma$ в монокристаллах сплава Fe-28%Ni-17%Cr-11.5%Al-2.5%Ta (at.%) при деформации растяжением: $1,2-\sigma_{cr};\ 3,4-\Delta\sigma;\ 1,3$ — кристаллы [$\overline{1}11$]; 2,4 — кристаллы [001].

Ориентационная зависимость температурного интервала СЭ и величины $\Delta \sigma$ связана с двумя обстоятельствами: во-первых, с ориентационной зависимостью напряжений σ_{cr} , необходимых для начала $\gamma - \alpha'$ -МП под нагрузкой и, во-вторых, с ориентационной зависимостью прочностных свойств высокотемпературной фазы. Диссипация энергии ΔG_{dis} при обратимых $\gamma - \alpha'$ -МП и величина $\Delta \sigma$ будет определяться процессами локального пластического течения, происходящего одновременно с мартенситным переходом. Можно предположить, что в кристаллах [001] реализуются более благоприятные для подавления процессов диссипации энергии условия, чем для кристаллов $[\overline{1}11]$. Это низкие значение σ_{cr} для образования мартенсита под нагрузкой и высокие значения напряжений σ_{cr} для пластической деформации высокотемпературной фазы [5,6]. первое условие вытекает из соотношения (1), из которого следует, что $\sigma_{cr}[001] < \sigma_{cr}[\overline{1}11]$ в исследованном температурном интервале развития $\gamma - \alpha'$ -МП под нагрузкой. Второе условие требует дополнительной экспериментальной проверки, когда при высоких температурах испытания будет достигнута температура M_d , при которой напряжения, необходимые для начала МП под нагрузкой, будут равны напряжению пластической деформации высокотемпературной фазы. При деформации растяжением провести такие эксперименты не просто из-за достижения уже при $T = 300 \, \mathrm{K}$ в кристаллах [001] $\sigma_{cr} = 950 \,\mathrm{MPa}$, а в [111] — $\sigma_{cr} = 1200 \,\mathrm{MPa}$. Эти напряжения оказываются близкими к теоретической прочности $\sim G/10-G/20$ и равны соответственно G/70 для кристаллов [$\overline{1}11$] и G/90 для [001]. Для решения этой проблемы представляют интерес эксперименты по сжатию этих кристаллов.

Итак, на монокристаллах сплава Fe-28%Ni-17%Co-11.5%AL-2.5%Ta (at.%) впервые обнаружена ориентационная зависимость величины СЭ, температурного интервала СЭ $\Delta T_{\rm SE}$ и величины механического гистерезиса $\Delta \sigma$ при развитии $\gamma - \alpha'$ -МП под нагрузкой. Низкие значения $\Delta \sigma$ в монокристаллах [001] по сравнению с $\Delta \sigma = 550$ MPa в текстурированных поликристаллах $\langle 100 \rangle \{ 035 \}$ связаны с влиянием границ зерен на процессы рассеяния энергии при развитии $\gamma - \alpha'$ -МП под нагрузкой.

Работа выполнена при финансовой поддержке грантов, РФФИ № 09-08-92501-ИК_а, 10-08-92501-ИК_а, 10-03-00154_а. CRDF RUE1-2940-TO-09 RUE1-2983-TO-10.

Список литературы

- [1] Кокорин В.В. Мартенситные превращения в неоднородных твердых растворах. Киев: Наук. думка, 1987. 168 с.
- [2] Чумляков Ю.И., Киреева И.В., Панченко Е.Ю., Захарова Е.Г., Кириллов В.А., Ефименко С.П., Сехитоглу Х. // Докл. Академии наук. 2004. Т. 394. № 1. С. 54–57.
- [3] Tanaka Y., Himuro Y., Kainuma R., Sutou Y., Omori T., Ishida K. // Science. 2010. V. 327. N 3. P. 1488–1490.
- [4] Daroczi L., Palanki Z., Szabo S., Beke D.L. // Mater. Sci. Eng. 2004. V. 378. P. 274–277.
- [5] Otsuka K., Wayman C.M. Shape memory materials. Cambridge University PRESS, 1998. 284 p.
- [6] Kuramoto S., Furuta T., Nagasako N., Horita Z. // Appl. Phys. Lett. 2009. V. 95. P. 211901 (1–3).