05

Длиннокорреляционные многомасштабные взаимодействия в ансамблях дефектов и оценка надежности алюминиевых сплавов при последовательных динамических и усталостных нагружениях

© В. Оборин, М. Банников, О. Наймарк, С. Froustey

Институт механики сплошных сред УрО РАН, Пермь, Россия E.N.S.A.M. LAMEFIP, EA 2727, Esplanade des Arts et Métiers, 33405 Talence Cedex, France E-mail: oborin@icmm.ru

Поступило в Редакцию 13 октября 2010 г.

Проведено изучение роли коллективного поведения ансамблей дефектов в предварительно нагруженных образцах из сплава алюминия Al–Cu, подверженных усталостным испытаниям, соответствующим базовому сроку службы (приблизительно $2 \cdot 10^5$ циклов). После деформирования рельеф поверхности анализировался с помощью интерферометра-профилометра New-View с целью изучения масштабно-инвариантных закономерностей эволюции структуры, обусловленной дефектами.

Стадийность разрушения в многоцикловом диапазоне связывается традиционно со структурными признаками поврежденности, относящимися к широкому спектру пространственных масштабов: полосы локализованной пластичности (persistent slip bands — PSB), усталостные бороздки (striations), микротрещины, формируемые при пересечении PSB, зернограничные дефекты. Следует отметить, что основная поврежденность относится к масштабам дефектов $0.1 \mu m - 1 mm$, которые существенно меньше масштабов, регистрируемых методами неразрушающего контроля, применяемых для оценки надежности в процессе эксплуатации изделий.

Количественная фрактография является эффективным методом исследования роли исходной структурной гетерогенности, накопления

105

дефектов различных масштабных уровней (дислокационных ансамблей, микропор, микротрещин) при оценке критических условий перехода от дисперсного к макроскопическому разрушению, учитывая характерные стадии этого перехода — зарождение и развитие трещин, что является основой для оценки временного ресурса изделий в условиях многоцикловой усталости.

Анализ морфологии поверхностей разрушения с использованием пространственно-временны́х инвариантов впервые был предложен в [1] на основе анализа рельефа поверхности разрушения, обнаруживающей свойства самоафинности, которые отражаются в инвариантных характеристиках рельефа поверхности (шероховатости) на широком спектре пространственных масштабов и которые, в свою очередь, отражают коррелированное поведение дефектов различных масштабных уровней.

В работе исследован сплав алюминия 2017А-ТЗ (Al-Cu), используемый в авиационной промышленности и автомобилестроении. Нагружение образцов осуществлялось двумя способами — квазистатическим и динамическим растяжениями, после чего образцы подвергались циклической нагрузке, соответствующей базовому сроку службы (приблизительно 2 · 10⁵ циклов), с последующим изучением фрактографии изломов с помощью интерферометра-профилометра New-Wiew 5010 в терминах показателя шероховатости — показателя Хёрста.

Динамическое преднагружение образцов проводилось с применением инерционного нагружающего устройства, позволяющего реализовать динамическое деформирование на фиксированное значение величины деформации при значениях скоростей деформации $\sim 10^3\,{\rm s}^{-1}$. Истинные значения скорости деформации измерялись с использованием скоростной камеры REMIX, синхронизированной с моментом начала деформирования.

Усталостные испытания проводились на классической испытательной машине резонансного типа (Amsler Vibrophore) с контролем усилия в условиях полностью обратимого цикла нагрузки-разгрузки. Данная установка позволяла регистрацию частотных характеристик деформируемого образца и остановку процесса усталостного нагружения при резком изменении импеданса при зарождении усталостной трещины или формировании зоны локализации разрушения. Изменение частоты на 0.4 Hz соответствовало появлению трещины с характерным размером ~ 1 mm. Уровень приложенных напряжений позволял проводить исследование усталостного ресурса до значений, соответствующих $2\cdot 10^5$ циклов.

Рис. 1. Морфология поверхности (сканирующая электронная микроскопия) и схематическое представление процедуры сканирования зоны усталостного разрушения.

Исследование долговечности проводилось для уровня напряжений (220 MPa), соответствующих критическому количеству циклов ~ $2 \cdot 10^5$, оцениваемых для материалов в исходном (недеформированном) состоянии для условий многоцикловой усталости. Механические испытания показали высокую чувствительность сплава Al–Cu к предварительному нагружению [2].

Структурные закономерности усталостного разрушения исследовались на образцах, поверхность разрушения которых "вскрывалась" при появлении признаков изменения резонансной частоты в ходе циклического нагружения при последующем одноосном квазистатическом растяжении. Морфологические особенности поверхности разрушения исследовались с использованием сканирующей электронной микроскопии, и было установлено наличие микротрещин, появление которых инициировало изменение резонансной частоты образцов. Установлено наличие трех характерных зон (рис. 1, зоны *1, 2 и 3*): зона *1*, соответствующая зарождению усталостной трещины; зона *2*, соответствующая формированию области подготовки усталостного разрушения, и зона *3*, создаваемая заключительным растяжением образца и имеющая "грубый" структурный рельеф.

Две зоны (1 и 2) представляют интерес для анализа "восприимчивости" усталостного разрушения (долговечности) к предварительному

нагружению. Зона 1 (рис. 1), расположенная около боковой поверхности образца, содержит множественные случайно расположенные полосы скольжения и микротрещины, соответствует области инициирования усталостной трещины, и морфология данной зоны не зависит от типа предварительного нагружения. Морфология второй зоны (зона 2) существенно зависит от величины предварительной деформации (значения k), но обнаруживает слабую чувствительность к скорости деформации (квазистатическое деформирование и динамическое деформирование 300 s⁻¹).

Анализ скейлинга рельефа поверхностей разрушения был применен для оценки структурного состояния материалов, подвергнутых различной истории предварительного нагружения, и при последующем усталостном нагружении. Поверхности разрушения сканировались методами SWLI-интерферометрии (интерферометр-профилометр New-View) с целью изучения масштабно-инвариантных закономерностей процесса усталостного разрушения для предварительно деформированных образцов.

Области сканирования распределялись по зоне 2 (рис. 1), и анализировались одномерные образы-срезы рельефа поверхности в радиальном направлении по отношению к границе раздела между зонами 1 и 2. Около 30 одномерных "срезов" анализировались в пределах каждого "окна", обеспечивая представительность данных о структуре рельефа, индуцированного дефектами, с вертикальным разрешением ~ 0.1 nm и горизонтальным ~ 0.5 μ m.

Для определения показателя структурного скейлинга измеренных профилей использовался метод определения показателя Хёрста:

$$Z_{\max}(r) = \langle \max\{Z(r')\}_{R < r' < R+r} - \min\{Z(r')\}_{R < r' < R+r} \rangle_R, \qquad (1)$$

$$Z_{\max}(r) \propto r^{\varsigma},$$
 (2)

где $Z_{\max}(r)$ представляет собой усредненную разность в значениях высот рельефа поверхности разрушения, ς — показатель шероховатости (показатель Хёрста). Представление этих данных в логарифмических координатах в соответствии с соотношениями (1) и (2) позволяет провести оценку показателя шероховатости как пространственного инварианта, соответствующего постоянному наклону зависимости $\ln Z_{\max}(r)$ от $\ln(r)$ и масштабу, на котором он наблюдается.

На рис. 2 и в таблице представлены средние значения показателя Хёрста для каждого типа последовательности нагрузки. Значения показателя ς отражают режим кинетики трещины, который характерен

Рис. 2. Зависимость $\ln Z_{\max}(r)$ от $\ln(r)$ для каждого типа нагружения.

для многоцикловой усталости (приблизительно $\zeta = 0.6 - 0.7$). Линейный наклон $\ln Z_{\max}(r)$ от $\ln(r)$ позволил провести оценку показателя шероховатости как инварианта в диапазоне масштабов *r*. Разрешение интерферометра позволяет определить существование верхних и нижних границ масштаба скейлинга между *Z* и *r*.

Микроструктурные свойства поверхностей излома для сплава Al–Cu показали масштабную универсальность в терминах показателя Хёрста. Постоянство показателя Хёрста отражает самоподобный сценарий кинетики поврежденности, обеспечивающий переход к разрушению при распространении трещины при многоцикловой усталости. Высокая чувствительность сплава Al–Cu к предварительному нагружению может быть обусловлена многомасштабным каналом освобождения свободной энергии, который обеспечивает самоподобие микроструктурных изменений в широком диапазоне пространственных масштабов. Эта масштабная универсальность может быть отражена в соответствующей форме закона о накоплении поврежденности, который связывает нелинейность выхода энергии и структурную релаксацию из-за образования дислокационных субструктур и микротрещин.

Деформация, %	Скорость деформации, s^{-1}	Показатель Хёрста
0	Усталостное нагружение без	0.67 ± 0.01
	предварительного деформирования	
25	Квазистатическое нагружение	0.68 ± 0.01
25	300	0.65 ± 0.01
50	Квазистатическое нагружение	0.66 ± 0.01
50	300	0.64 ± 0.01
75	300	0.71 ± 0.01

Зависимость показателя Хёрста для различных условий предварительного деформирования

Постоянство показателя скейлинга на широком спектре масштабов, включающем масштабы эволюции типичных дефектных субструктур, позволяет сделать вывод о том, что кинетика распространения трещин может быть рассмотрена в рамках широкого класса критических явлений — структурно-скейлинговых переходов [3,4], описывающих эволюцию дефектов различных масштабных уровней. Определение показателя скейлинга деформационных дефектных структур может дать физическое объяснение универсальности данного класса критических явлений применительной к сценариям разрушения различных классов материалов и роли состояния структуры (в том числе формируемой случайными динамическими воздействиями) на "пороговые" характеристики перехода пластически деформированного материала к разрушению.

Работа выполнена при финансовой поддержке РФФИ (гранты № 08-01-00699, № 09-01-92005-ННС_а, № 09-01-92441-КЭ_а.)

Список литературы

- [1] *Mandelbrot B.B.* The fractal geometry of nature. New York: W.H. Freeman, 1983. P. 468.
- [2] Frousty C., Lataillade J.L. // International J. Fatigue. 2008. V. 30. P. 908-916.
- [3] Naimark O.B., Uvarov S.V. // International J. Fracture. 2004. V. 128. N 1–4. P. 285–292.
- [4] Lataillade J.L., Naimakr O.B. // Physical Mesomechanics. 2004. V. 7. N 4. P. 55–66.