01;05 Двухфазный электромагнитный кристалл

© А.И. Назарько, Е.А. Нелин, В.И. Попсуй, Ю.Ф. Тимофеева

Национальный технический университет Украины "Киевский политехнический институт" E-mail: ye.nelin@gmail.com

Поступило в Редакцию 9 августа 2010 г.

Предложены двухфазные кристаллоподобные структуры, позволяющие заметно уменьшить габариты устройств по сравнению с однофазными. Приведены экспериментальные и расчетные характеристики одно- и двухфазного электромагнитных кристаллов.

Кристаллоподобные структуры (КС) — полупроводниковые сверхрешетки, фотонные и фононные кристаллы — базовые структуры наноэлектроники. Фотонные кристаллы на основе микрополосковых линий, называемые электромагнитными кристаллами (ЭК), позволяют существенно улучшить характеристики устройств радиодиапазона.

В настоящей работе предложены двухфазные КС, габариты которых заметно меньше по сравнению с традиционными однофазными, а также выполнено сравнение характеристик одно- и двухфазного ЭК.

Принципиальные особенности кристаллов и КС проявляются в одномерных структурах. На рис. 1, *а* показана зависимость потенциала для кристалла согласно модели Кронига–Пенни. Зонная диаграмма кристалла формируется в результате взаимодействия волн, отраженных барьерами. Условие брэгговских отражений, соответствующее границам запрещенным зонам, имеет вид [1]

$$K_n = \pm \frac{\pi n}{d},\tag{1}$$

где K_n — блоховское волновое число; n = 1, 2, ... — номер запрещенной зоны.

Зависимость потенциала на рис. 1, а можно рассматривать и как зависимость квантово-механического импеданса для кристалла или волнового импеданса для КС любой природы. Импедансный барьер моделирует неоднородность КС. Особенности формирования характеристик КС определяют границы неоднородностей как источники

81

Рис. 1. Потенциальная или импедансная зависимость для кристалла и КС: кристалл и однофазная КС (*a*), *d* — период, *l* и *2* — отраженные волны; двухфазная КС (*b*).

отраженных волн. Сдвиг фаз между отраженными волнами 1 и 2 равен $\varphi_{12} = \varphi_r + \varphi_d$, где φ_r — разность фаз при отражении, φ_d — удвоенный набег фаз на расстоянии d. В кристаллах и в традиционных КС с идентичными неоднородностями $\varphi_r = 0$, так что для брэгговских отражений $\varphi_{12} = \varphi_d = 2\pi n$. Такие структуры однофазные.

Искусственная КС может иметь и более сложную импедансную зависимость, что открывает дополнительные возможности в формировании ее зонной диаграммы. Рассмотрим КС, образованную чередующимися высокоомными и низкоомными неоднородностями (рис. 1, *b*). Обозначим эти неоднородности и индексы их параметров буквами *H* и *L* (highand low-impedance). Волновые импедансы *H*- и *L*-неоднородностей, нормированные к импедансу однородной среды, отвечают условию $Z_H > 1 > Z_L$.

Коэффициент отражения от границы между однородной средой и неоднородностью с импедансом Z равен r = (1 - Z)/(1 + Z), поэтому $r_H < 0$, а $r_L > 0$. Соответствующие границы H- и L-неоднородностей как источники отраженных волн противофазны. Такая КС двухфазная.

$$K_n = \pm \frac{\pi n}{2d}.$$
 (2)

Условие (2) соответствует также тому, что период двухфазной КС равен 2d.

Как видно из (1) и (2), значение K_n двухфазной КС в 2 раза меньше, чем однофазной. Степень уменьшения средней частоты *n*-ной запрещенной зоны двухфазной КС определяют дисперсионные характеристики КС. В случае линейных характеристик эта частота уменьшится в 2 раза, соответственно уменьшатся и габариты устройства, рассчитанного на заданные частоты.

Найдем фазу φ_R коэффициента отражения R одиночной неоднородности. Согласно [2], $R = (1 - Z_i)/(1 + Z_i)$, где $Z_i = (1 - iZt)/(1 - iZ^{-1}t)$ — входной импеданс неоднородности, $t = tg \varphi$, $\varphi = kl$, k и l — волновое число и длина неоднородности. Исходя из этого

$$\varphi_R = \begin{cases} \arctan X, & Z < 1, \\ \pi + \arctan X, & Z > 1, \end{cases}$$
(3)

где $X = 2t^{-1}/(Z + Z^{-1})$. Согласно (3), разность фаз коэффициентов отражения H- и L-неоднородностей, приведенная к их центрам, равна $\varphi_r = \pi + \psi$, где $\psi = \arctan[X_H - X_L)/(1 + X_H X_L)] + \varphi_H - \varphi_L$. H- и L-неоднородности противофазны, если $\psi = 0$, чему соответствуют условия $Z_H Z_L = 1$ и $\varphi_H = \varphi_L$. При этом $R_H = -R_L$ и амплитуды волн, отраженных H- и L-неоднородностями, равны. Поскольку в запрещенных зонах с четными номерами брэгговский набег фаз кратен 2π радиан, такие волны взаимно компенсируются и эти зоны отсутствуют. При невыполнении указанных условий $|\psi| \ll \pi$ и $\varphi_r \approx \pi$. Так, если $Z_H = 4$, $Z_L = 0.5$ и $\varphi_H = \varphi_L = \pi/4$, то $\psi = -13^\circ$.

Рассмотрим реализацию двухфазного ЭК. Как показано в [3], в первом приближении ЭК можно моделировать неоднородной линией передачи с импедансной зависимостью, приведенной на рис. 1, *а*. Традиционная ЭК-неоднородность в виде отверстия, расположенного под полосковым проводником и выполненного обычно лишь на металлизированной поверхности, — H-неоднородность с $Z_H > 1$. Комбини-

Рис. 2. Структура двухфазного ЭК: *1* — сигнальный проводник, *2* и *3* — несквозные круглые неметаллизированное и металлизированное отверстия в диэлектрической подложке.

рованные неоднородности, сочетающие неоднородности на металлизированной поверхности, в диэлектрической подложке и на сигнальной поверхности, имеют $Z_H \gg 1$ [4].

Характеристический импеданс микрополосковой линии уменьшается с уменьшением толщины диэлектрика и с увеличением его диэлектрической проницаемости. Исходя из этого, *L*-неоднородность можно сформировать такими решениями: 1) несквозное металлизированное отверстие в подложке, гальванически соединенное с металлизированной поверхностью; 2) отверстие в подложке, заполненное диэлектриком более высокой диэлектрической проницаемости, чем подложка.

На рис. 2 показана структура двухфазного ЭК. *Н*- и *L*-неоднородности сформированы под сигнальным проводником несквозными круглыми неметаллизированными и металлизированными отверстиями в диэлектрике.

На рис. З приведены частотные характеристики двухфазного ЭК1 и однофазного ЭК2 в первой запрещенной зоне. Параметры ЭК1 и ЭК2: ширина полоскового проводника 2.5 mm, диаметр отверстий 8.6 mm, d = 20 mm, число отверстий 5, относительная диэлектрическая проницаемость диэлектрика 7, толщина диэлектрика 2.1 mm, глубина отверстий 1.7 mm. В ЭК1 металлизированы три отверстий. Расчет проведен в программном пакете Місгоwave Studio. Расчетные параметры: характеристический импеданс микрополосковой линии 50 Ω , относительная эффективная диэлектрическая проницаемость $\varepsilon = 4.9$,

Рис. 3. Экспериментальные (кривые 1, 2) и расчетные (3, 4) частотные зависимости коэффициентов отражения двухфазного(1,3) и однофазного (2,4) ЭК.

 $Z_H = 2.6$, $\varepsilon_H = 1.7$, $Z_L = 0.31$, $\varepsilon_L = 5.6$; на средней частоте $\varphi_r = 186^\circ$. Параметры неоднородностей рассчитаны по модели неоднородной линии передачи. Экспериментальные и расчетные значения средней частоты запрещенной зоны, определяемой минимумом коэффициента прохождения, для ЭК1 и ЭК2 равны соответственно 1.94, 4.19 и 1.84, 4.04 GHz. Средняя частота ЭК1 в 2.2 раза меньше. Превышение двух обусловлено тем, что, поскольку $\varepsilon_L > \varepsilon_H$, скорость волны в ЭК1 на 10% меньше, чем в ЭК2. При расчете на заданные частоты размеры ЭК1 будут в 2.2 раза меньше по сравнению с ЭК2.

Двухфазные ЭК позволяют заметно уменьшить габариты устройств на их основе. Двухфазные неоднородности повышают и эффективность ЭК за счет увеличения отношения импедансов разнородных областей структуры.

Список литературы

- [1] *Киттель Ч. //* Введение в физику твердого тела. М.: Наука, 1978. (*Kittel C.* Introduction to Solid State Physics. New York: John Wiley & Sons, 1976).
- [2] Нелин Е.А. // ЖТФ. 2009. Т. 79. В. 7. С. 27.
- [3] Назарько А.И., Тимофеева Ю.Ф., Нелин Е.А., Попсуй В.И. // ТКЭА. 2009.
 № 6. С. 38.
- [4] Назарько А.И., Нелин Е.А., Попсуй В.И., Тимофеева Ю.Ф. // ЖТФ. 2010.
 Т. 80. В. 4. С. 138.