¹¹ Определение тепловой мощности, выделяемой в вольфрам-бариевом катоде холловского плазменного двигателя

© В.А. Муравлев, В.Н. Шутов

Исследовательский центр им. М.В. Келдыша, Москва E-mail: kerc@enlet.msk.ru

Поступило в Редакцию 5 августа 2010 г.

Представлены результаты исследований вольфрам-бариевых катодов холловских плазменных двигателей в диапазоне токов разряда 1-5 А. Тепловые мощности, которые выделяются в данных катодах, определялись при их автономных огневых испытаниях. Полученные величины тепловых мощностей использовались для определения характеристик катодов. В результате было установлено, что температура плазмы внутри эмиттеров катодов находится на уровне $\sim 2 \text{ eV}$, величина прикатодного падения потенциала $\sim 9-12$ V, а доля ионного тока $S_i \sim 0.2$. При этом действительная ВАХ катода заметно отличается от ВАХ, полученной при автономных огневых испытаниях.

Катод является одним из основных узлов плазменных двигателей, в том числе магнитоплазмодинамических, холловских и ионных двигателей. В катодах холловских двигателей к эмиттеру подается рабочее тело, обычно инертный газ ксенон, служащее для поддержания дугового разряда. Запуск катодов производится после разогрева эмиттера стартовым нагревателем и последующего поджига разряда подачей напряжения на поджигной электрод. Затем катод функционирует в автономном режиме, при этом часть мощности плазменного двигателя затрачивается на его работу. Эта часть мощности не участвует в создании тяги двигателя, однако она влияет на КПД двигателя, поэтому определение ее величины представляет собой важную и актуальную задачу.

В принципе можно определять эту мощность в процессе работы двигателя [1], но это сопряжено с рядом трудностей. Удобнее определять ее при автономных огневых испытаниях катодов. Наиболее простое решение заключается в поддержании дугового разряда между эмиттером катода и его поджигным электродом и измерении мощности

31

Рис. 1. Схема установки для определения тепловых мощностей, выделяемых в катоде и аноде. 1, 2, 3, 4 — термопары для измерения температур катода T_1 , $T_2, T_3, T_4, 5, 6$ — термопары для измерения температур стержня анода, 7 — термопара для измерения температуры анода, 8 — катод, 9 — анод, 10 — нагреватель катода, 11 – эмиттер катода, 12 — стержень, 13 — кронштейн катода, 14 — монтажная плата, 15 — часть стенки вакуумной камеры, 16 — трубопровод подачи газа к катоду.

этого разряда [2]. Однако данная мощность будет включать в себя мощность, выделяемую в поджигном электроде, выполняющем в данном случае роль анода. Поэтому лучше использовать анод, установленный напротив катода на некотором расстоянии от него.

Схема экспериментальной установки представлена на рис. 1. Катод крепился своим фланцем к тонкостенному кронштейну, который размещался на монтажной плате, стыкующейся с вакумной камерой. На внешних поверхностях катодов устанавливались термопары для измерения температур. Напротив катода на расстоянии $L \sim 5$ mm от его торца размещался анод в виде плоской пластины. Испытания проводились в вакуумной камере, снабженной турбомолекулярным насосом, системой электропитания и системой подачи рабочего тела (Xe). Поскольку стартовый нагреватель в конструкции таких катодов располагается вблизи эмиттера, то распределение температур по внешней поверхности катода оказывается практически одинаковым при одинаковой

тепловой мощности, выделяемой во внутренней полости катода при его функционировании и в его нагревателе при разогреве катода. Это позволило применить простой способ определения тепловой мощности, выделяющейся в катоде, заключающийся в построении зависимостей температур поверхности катода от мощности W_h , выделяемой в нагревателе, и последующем сопоставлении этих зависимостей с распределением температур, возникающим при функционировании катода. За величину мощности дугового разряда, выделяемую в катоде при его функционировании Q_{cat} , принималась соответствующая мощность W_h . Чтобы убедиться в корректности получаемых результатов, производилось определение тепловой мощности, выделяющейся в аноде Q_{an} путем определения мощности, передаваемой теплопроводностью через стержень, и мощности излучения анода.

Исследованиям подверглись три вольфрам-бариевых катода: катод HCN-5 (максимальный ток 5A), катод HNC-10 (максимальный ток 10 A), катод BaCN-5 (максимальный ток 5 A, катод имеет повышенную прочность к механическим нагрузкам). Исследования проводились в диапазоне токов разряда $J = 1-5 \,\mathrm{A}$ и расходов рабочего тела $m = (0.25 - 0.5) \cdot 10^{-6}$ kg/s. После определения абсолютных величин тепловых мощностей Q_{cat} и Q_{an} вычислялись их относительные значения по отношению к мощности дугового разряда W, т.е. величины η_{cat} и η_{an} . На рис. 2 представлена зависимость мощности Q_{cat} от тока разряда J при различных расходах m для катода HCN-5 (для других катодов получены аналогичные зависимости). Мощность Q_{cat} почти линейно зависит от тока разряда Ј и слабо — от расхода рабочего тела *m*. На рис. 3 представлены зависимости $\eta_{cat} = f(J, m)$ и $\eta_{an} = f(J, m)$ для катода HCN-5, а также ряд данных, относящихся к катодам HCN-15, BaCN-5. Кроме того, на поле данного рисунка представлены значения

$$\eta = 1 - (\eta_{cat} + \eta_{an}),$$

которые отражают как возможную ошибку в определении величин η_{cat} , η_{an} , так и тот факт, что при расширении плазмы, истекающей из катода, не вся ее энергия выделяется в аноде. Приведены значения относительной энтальпии плазмы η_{pl} (по отношению к мощности разряда) для катода HCN-5 при $m = 0.35 \cdot 10^{-6}$ kg/s, которые вычислялись по

Рис. 2. Зависимость мощности теплового потока в катод Q_{cat} от тока разряда J при различных расходах m для катода HCN-5: $1 - m = 0.25 \cdot 10^{-6}$ kg/s, $2 - m = 0.35 \cdot 10^{-6}$ kg/s, $3 - m = 0.5 \cdot 10^{-6}$ kg/s.

Рис. 3. Зависимости η_{cat} , η_{an} , η , η_{pl} от тока разряда *J* при различных расходах *m* для различных катодов: η_{cat} и η_{an} для катода NCH-5: *1* — $m = 0.25 \cdot 10^{-6}$ kg/s, $2 - m = 0.35 \cdot 10^{-6}$ kg/s, $3 - m = 0.5 \cdot 10^{-6}$ kg/s; η_{cat} для катода HCN-10 при $m = 0.5 \cdot 10^{-6}$ kg/s (черный квадрат); η_{cat} для катода BaCN-5 при $m = 0.25 \cdot 10^{-6}$ kg/s (круг); η для катода HCN-5 (треугольник), $4 - \eta_{pl}$ для катода HCN-5 при $m = 0.35 \cdot 10^{-6}$ kg/s.

$$\eta_{pl} = (m/M_i) \left[2.5k(T + \alpha T) + eU_i \alpha \right] / (JU),$$

где k — постоянная Больцмана, U_i — потенциал ионизации Хе, T — температура плазмы, e — заряд электрона, M_i — масса атома Хе, α — степень ионизации, U — напряжение разряда.

Величина η_{cat} слабо изменяется с ростом тока разряда и находится в довольно узком диапазоне 0.25–0.35 для различных катодов. Полученная слабая зависимость η_{cat} от тока разряда J свидетельствует о слабой зависимости величины прикатодного падения потенциала от тока разряда. Для оценки тепловой мощности, выделяющейся в катоде при его автономных огневых испытаниях при расстояниях $L \sim 5$ mm между анодом и катодом, можно руководствоваться приближенным выражением

$$Q_{cat} \sim 0.3 JU.$$

Полученные данные были использованы для расчета параметров катодов, который проводился с использованием интегральных выражений для уравнения баланса тока и энергии на поверхности эмиттера, уравнения баланса энергии в ионизационном слое, уравнения энергии для всего объема плазмы во внутренней полости эмиттера:

$$S_{e} + S_{i} - S_{e \ inv} = 1,$$

$$(Q_{cat} - Q_{d+ign}) = J_{i}(U_{em} + U_{i} - \varphi) - J_{e \ em}(\varphi + 2kT_{c}/e)$$

$$+ J_{e \ inv}(\varphi + 2kT/e) + Q_{rad},$$

$$S_{e}(U_{em} + 2kT/e) = S_{i}(U_{i} + 2kT/e) + 3.2kT/e + S_{e \ inv}(\varphi + 2kT/e),$$

$$U_{c0} = U_{em} + \Delta U_{c} = (Q_{cat} - Q_{d+ign})/J + 3.2kT/e + (Q_{bd} + Q_{pl})/J,$$

где $J_{e\,em}$ — ток эмиссии, $S_e = J_{e\,em}/J$ — доля тока эмиссии, J_i — ток ионной бомбардировки, $S_i = J_i/J$ — доля ионного тока, $J_{e\,inv}$ — обратный электронный ток, $S_{e\,inv} = J_{e\,inv}/J$ — доля обратного электронного тока, Q_{d+ign} — доля мощности, выделяемая в диафрагме эмиттера и поджигном электроде, U_{em} — прикатодное падение потенциала, φ — работа выхода эмиттера, T_c — температура эмиттера, Q_{rad} — мощность излучения из плазмы, U_{c0} — падение напряжения от эмиттера до диафрагмы эмиттера, ΔU_c — падение напряжения в столбе дуги внутри

эмиттера, Q_{bd} — тепловая мощность из плазмы в торец диафрагмы эмиттера, Q_{pl} — мощность, затрачиваемая на ионизацию и нагрев рабочего тела внутри эмиттера.

Мощность Q_{d+ign} определялась по выражениям для удельной мощности, приходящейся на единицу площади отверстия в диафрагме эмиттера или поджигного электрода:

$$q = 0.25en_i V_{i\,ch} [U_w + U_i - \varphi + 2k(T - T_w)/e] + 0.25en_e V_{e\,ch} \exp(-eU_w/kT_e) [\varphi + 2k(T - T_w)/e],$$

где U_w — пристеночный скачок потенциала, T_w — температура диафрагмы эмиттера или поджигного электрода, n_i , n_e — концентрации ионов и электронов у стенки, $V_{e\,ch}$, $V_{i\,ch}$ — хаотические скорости электронной и ионной компонент плазмы:

$$V_{e\,ch} = \sqrt{8kT/\pi M_e}, \qquad V_{i\,ch} = \sqrt{8kT/\pi M_i}.$$

Расчеты позволили установить значения параметров и характеристик катодов. Температура плазмы внутри эмиттера составила $T \sim 2 \text{ eV}$, а величина прикатодного падения потенциала $U_{em} \sim 9-12 \text{ V}$, что говорит о доминировании ступенчатой ионизации атомов ксенона. Доля обратного электронного тока составила заметную величину, доходящую до $S_{e\,inv} \sim 0.4$; доля же ионного тока S_i находится на уровне $S_i \sim 0.2$. То есть реальная плотность электронного тока термоэмиссии с поверхности эмиттера заметно превосходит плотность тока, рассчитываемую по величине тока разряда. Результаты расчета позволили также сделать вывод, что действительная ВАХ катодов даже при $L \sim 5 \text{ mm}$ заметно отличается от ВАХ, получаемой при проведении их автономных огневых испытаний.

Список литературы

- Arkhipov B. // 26th International Electric Propulsion Conference. Kokura-kita, Kitakyushu, Japan, Kitakyushu International Conference Center. October 17–21, 1999. V. 2. P. 720.
- [2] Gorshkov O.A., Muravlev V.A. // 26-th International Electric Propulsion Conference. Kokura-kita, Kitakyushu, Japan, Kitakyushu International Conference Center. October 17–21, 1999. V. 1. P. 689.