06 Отказы мощных полевых транзисторов под действием протонов

© Н.А. Иванов, Е.В. Митин, В.В. Пашук, М.Г. Тверской

Петербургский институт ядерной физики им. Б.П. Константинова РАН, Гатчина ОАО "РНИИ Электронстандарт", Санкт-Петербург

E-mail: ivanovna@pnpi.spb.ru

Поступило в Редакцию 27 июля 2010 г.

Исследовано воздействие протонов с энергией 1000 MeV на ряд типовых мощных полевых транзисторов, изготовленных по микроэлектронной технологии. Показано, что под действием протонов в этих изделиях происходит пробой подзатворного окисла, приводящий к "катастрофическому отказу" прибора. Предложена модель возникновения этих отказов, основанная на образовании в чувствительной области транзисторов быстрых остаточных ядер в результате ядерных реакций протонов с ядрами атомов полупроводникового материала.

В настоящее время в аппаратуре космического назначения, в импульсных преобразователях вторичных источников питания широко применяются мощные полевые (металл-окисел-полупроводник) транзисторы (далее MOSFET). Современные MOSFET преимущественно изготавливаются с вертикальной структурой элементарной ячейки (рис. 1), позволяющей получить крайне низкие (единицы $m\Omega$) сопротивления сток-исток в открытом состоянии и достаточно высокие (до полутора kV) пробивные напряжения. При работе в диапазоне низких и средних напряжений MOSFET находятся вне конкуренции благодаря указанным достигнутым параметрам, а также малым временам переключения (десятки ns) и высокой надежности.

Известно, что под действием отдельных тяжелых ионов в этих транзисторах наблюдается пробой подзатворного окисла (SEGR-эффект — Single event Gate Rupture), который проявляется в резком росте тока утечки затвора [1,2] и приводит к отказу прибора. Одной из причин возникновения этого эффекта является снижение пробивного напряжения диэлектрика при прохождении через его объем ионизирующей

12

Рис. 1. Сечение ячейки MOSFET.

частицы. Вторая причина связана с вкладом подложки, в которой при прохождении иона создается большая концентрация неравновесных носителей тока, способствующая подводу напряжения сток-исток к границе кремния и подзатворного окисла и тем самым к увеличению напряженности поля в подзатворном диэлектрике.

Вследствие этого исследование воздействия различных типов частиц космического излучения на такие транзисторы представляет интерес. В настоящей работе изучалось возникновение SEGR-эффекта в ряде мощных типовых MOSFET под действием высокоэнергетичных протонов.

Облучение MOSFET проводилось на синхроциклотроне ПИЯФ РАН при энергии протонов 1000 MeV. Типы исследуемых MOSFET и их основные параметры приведены в табл. 1.

			Электрические параметры			
№ п/п	Тип MOSFET	Тип канала	Максимальное напряжение сток-исток (U _{DS} max), V	Максимальный ток стока (I _{D max}), А	Максимальное напряжение затвор-исток (U _{GS max}), V	
1	IRF520	Ν	100	9.7	± 20	
2	IRF530	Ν	100	17	± 20	
3	IRF630	Ν	200	9	± 20	
4	IRF630FP	Ν	200	9	± 20	
5	IRF9540	Р	-200	19	± 20	
6	IRF9640	Р	-200	11	± 20	

Таблица 1. Типы и основные параметры исследуемых MOSFET

Получение экспериментальных данных о напряжениях сток-исток (U_{GS}) и затвор-исток (U_{DS}) , приводящих к возникновению SEGR-эффекта в MOSFET, проводилось в следующем порядке:

• выборка из четырех MOSFET облучалась протонами при некотором фиксированном значении U_{DS} (от 0 до $U_{DS \max}$) и начальном значении U_{GS} ;

• при отсутствии отказов всех MOSFET выборки после флюенса протонов $5 \cdot 10^{10}$ cm⁻² (выбор конкретной величины флюенса протонов обусловлен условиями длительной эксплуатации MOSFET в космическом пространстве и соответствует 15 Gy поглощенной дозы по кремнию) напряжение U_{GS} увеличивалось на 2–5 V и начинался новый сеанс облучения;

• сеансы облучения повторялись вплоть до отказа всех MOSFET выборки;

• процедура повторялась для другого фиксированного значения U_{DS}.

На рис. 2 приведены зависимости пороговых напряжений SEGR-эффекта для следующих MOSFET: a — IRF520 и IRF530 ($U_{DS \text{ max}} = 100 \text{ V}$); b — IRF630 ($U_{DS \text{ max}} = 200 \text{ V}$) в двух конструктивных исполнениях — с металлическим фланцем (собственно IRF630) и в полностью изолированном пластмассовом корпусе (IRF630FP); c — IRF9640 и IRF 9540 ($U_{DS \text{ max}} = 200 \text{ V}$).

Результаты измерений показали, что для перечисленных MOSFET напряжение пробоя затвор-исток при нулевом напряжении сток-

Рис. 2. Зависимости пороговых напряжений SEGR-эффекта для MOSFET: *a* — IRF520 и IRF530; *b* — IRF630 и IRF630FP; *c* — IRF9640 и IRF9540.

исток ($U_{DS} = 0$) совпадает с напряжением электрического пробоя в необлученных образцах $-U_{GSbr}$. MOSFET при $U_{DS} = 0$ практически представляет собой MOS-конденсатор, напряжение пробоя U_{GSbr} которого пропорционально толщине окисной пленки. В работах [3,4] было показано, что облучение пленки диэлектрика MOSFET частицами с линейными потерями энергии LET менее 15 MeV · cm² · mg⁻¹ не влияет на напряжение ее электрического пробоя. Поскольку LET самих протонов и вторичных частиц, образующихся при ядерных взаимодействиях протонов с ядрами кремния, не превышают эту величину [5], можно утверждать, что полученные нами данные по облучению протонами транзисторов при $U_{DS} = 0$ совпадают с выводами работ [3,4].

Для анализа экспериментальных данных использована зависимость величины пробивного напряжения затвор-исток вертикальных *N*-канальных MOSFET от LET ионов, проходящих через транзистор [6]:

$$U_{GS} = 0.87 \left(1 - \exp\left[-\frac{L}{18}\right] \right) U_{DS} - \frac{10^{-7} T_{ox}}{1 + \frac{L}{53}},\tag{1}$$

где U_{GS} — напряжение пробоя подзатворного окисла, V; U_{DS} — напряжение сток-исток, V; T_{ox} — толщина пленки окисла, сm; L — LET

Таблица 2	Параметры	аппроксимации
-----------	-----------	---------------

Тип MOSFET	U_{GSbr} , эксп., V	<i>U_{GSbr}</i> , аппр. 2, V	LET, annp. 2, MeV \cdot cm ² \cdot mg ⁻¹
IRF520	66.1	68.2	5.53
IRF530	70	74.5	4.70
IRF630	80.0	80.1	1.85
IRF630FP	48	48	1.18

ионов, MeV · cm² · mg⁻¹. Поскольку облучение протонами практически не влияет на электропрочность окисной пленки, то второе слагаемое в (1) равно $10^{-7} \cdot T_{ox} = U_{GSbr}$. В этом случае зависимость $U_{GS}(U_{DS})$ линейная функция, вид которой зависит от частиц LET, проходящих через эпитаксиальный слой транзисторов:

$$U_{GS} = 0.87(1 - \exp(-L/18))U_{DS} - U_{GSbr}.$$
 (2)

В табл. 2 приведены результаты аппроксимации экспериментальных данных по SEGR-эффекту в транзисторах IRF520, IRF530, IRF630 и IRF630FP. Из этой таблицы следует, что полученные величины LET примерно на три порядка превышают LET для протонов с энергией 1000 MeV ($\sim 2 \, \text{MeV} \cdot \text{cm}^2 \cdot \text{g}^{-1}$) и попадают в диапазон LET вторичных частиц, образующихся в ядерных реакциях протонов с ядрами кремния [5]. Этот результат указывает на то, что наблюдаемый SEGR-эффект обусловлен продуктами ядерных реакций и представляет собой типичный эффект воздействия отдельных частиц.

Сравнение чувствительности к SEGR-эффекту для MOSFET с различными предельными напряжениями U_{DS} (рис. 2 *a*, *b*) (т. е. с различной толщиной эпитаксиальных слоев: $h:h \approx 10\,\mu$ m для IRF520 и IRF530, $h \approx 20\,\mu$ m для IRF9640 и IRF9540) показывает, что заметное снижение порогового значения U_{GS} наблюдается для 100-вольтовых MOSFET практически с $U_{DS} = 0$, а для 200-вольтовых MOSFET — с $U_{DS} = 100$ V. Это означает, что пробег вторичных частиц — продуктов ядерных реакций, ионизирующих эпитаксиальный слой MOSFET в достаточной степени для развития SEGR-эффекта, превышает $10\,\mu$ m. Таким образом, SEGR-эффект может вызываться достаточно легкими вторичными частицами с малыми LET и большими пробегами. Отметим, что в пользу

данного вывода свидетельствуют и результаты вычисления величин LET по аппроксимации 2 (табл. 2).

Сравнение данных для N- и P-канальных MOSFET (рис. 2, b, c) показывает, что чувствительность P-канальных транзисторов к SEGR-эффекту намного меньше, чем N-канальных. Эти результаты согласуются с данными других авторов [7].

Данные по облучению транзисторов IRF630 показали, что в зависимости от технологии изготовления (партии выпуска) MOSFET с кристаллом одного типа могут иметь значительный разброс своих характеристик и соответственно различную устойчивость к SEGRэффекту (рис. 2, *b*). MOSFET IRF630FP, единственный среди всех исследованных, оказался чувствительным к SEGR-эффекту в пределах области допустимой работы: при U_{DS} менее 200 V и U_{GS} более – 20 V. Это означает, что данное изделие не следует применять в космических аппаратах.

Для оценок стойкости изделий полупроводниковой электроники к отказам под действием отдельных частиц используются величины сечения возникновения отказов Σ , которые определяются экспериментально из соотношения:

$$\Sigma = N/(\Phi_z),\tag{3}$$

где N — количество зарегистрированных отказов при облучении выборки из z изделий флюенсом частиц Ф. В настоящей работе при исследовании SEGR-эффекта z = 4, а в качестве Ф использовалась либо величина флюенса до отказа всех изделий, испытывавшихся в одном сеансе, либо (в случае отсутствия отказов или отказа не всех изделий выборки) максимальный флюенс за сеанс $\Phi_{max} = 5 \cdot 10^{10}$ сm⁻². Если при флюенсе Φ_{max} пробоев не зафиксировано, то оценивалась максимальная величина сечения Σ_{max} , равная:

$$\Sigma_{\rm max} = 1/(\Phi_{\rm max}z) = 5 \cdot 10^{-12} {\rm cm}^2.$$
(3a)

Зависимости $\Sigma(U_{GS})$, рассчитанные в соответствии с формулами (3) и (3а) для MOSFET, по которым получена достаточная экспериментальная статистика, приведены на рис. 3. Из этого рисунка видно, что величины сечений SEGR-эффекта растут с ростом напряжений U_{GS} при постоянных значениях U_{DS} . Данное обстоятельство обусловлено тем, что с ростом U_{GS} все большее число продуктов ядерных реакций имеет величины пробегов и LET, достаточные для возникновения

Рис. 3. Сечения SEGR-эффекта в зависимости от напряжения затвор-исток (U_{GS}) при различных значениях напряжения сток-исток (U_{DS}) для MOSFET: a — IRF520; b — IRF530; c — IRF630.

пробоя транзисторов. Очевидно, что максимальная величина сечения SEGR-эффекта (сечение насыщения) Σ_{sat} будет в том случае, когда каждая ядерная реакция в чувствительном объеме транзисторов будет приводить к пробою. Величина Σ_{sat} может быть определена из соотно-

шения:

$$\Sigma_{sat} = n \cdot \sigma \cdot S \cdot h, \tag{4}$$

где *n* — концентрация атомов вещества; *σ* — сечение ядерных реакций протонов с кремнием; S — площадь кристалла; h — толщина чувствительной области MOSFET. При $n = 5 \cdot 10^{22} \text{ cm}^{-3}$, $\sigma = 0.5 \cdot 10^{-24} \text{ cm}^2$, $S = 10^{-1} \,\mathrm{cm}^2, h = 10 \,\mu\mathrm{m}$ получаем $\Sigma_{sat} = 2.5 \cdot 10^{-6} \,\mathrm{cm}^2$. Соответственно средняя величина флюенса протонов Ф, способная вызывать пробой транзисторов в условиях насыщения, равна $\Sigma_{sat}^{-1} = 4 \cdot 10^5 \, \mathrm{cm}^{-2}$. Сравнение с полученными нами экспериментальными данными (рис. 3) показывает, что максимальное значение $\Sigma \approx 10^{-8} \, \mathrm{cm}^2$ было получено для MOSFET IRF630 и IRF520. Данный результат указывает на то, что условия насыщения не были достигнуты и к возникновению SEGR-эффекта причастны вторичные ядерные частицы, имеющие достаточно большие LET и пробеги [5]. По всей видимости, условия насыщения будет выполняться при больших значениях U_{DS} с ростом напряжения U_{GS} . Однако в этом случае величины напряжений U_{GS} существенно превышают допустимые рабочие значения и практического интереса не представляют.

Список литературы

- Titus J.L., Wheatley C.F., Burton D.J. et al. // IEEE Trans. Sci. Dec. 1995. V. 42 (6). P. 1928–1934.
- [2] Wheatley C.F., Titus J.L., Burton D.I. // IEEE Transactions. NS. 1994. V. 41. N 6. P. 2152–2159.
- [3] Wrobel T.F. // IEEE Trans. Nucl. Sci. 1987. V. NS-34 (6). P. 1262–1268.
- [4] Pikel J.C., Blandford J.T., Waskiewicz A.E., Strahan V. // IEEE Trans. Nucl. Sci. Dec. 1985. V. NS-32 (6). P. 4176–4179.
- [5] Ермаков К.Н., Иванов Н.А. Маркелов В.В. и др. // Вопросы атомной науки и техники. Сер. Физика радиационного воздействия на радиоэлектронную аппаратуру. Науч.-техн. сб. 2006. В. 3–4. С. 54–57.
- [6] Titus J.L., Wheatley C.F., Burton D.J. et al. // IEEE Trans. Nucl. Sci. Dec. 1995.
 V. 42 (6). P. 1928–1934.
- [7] Coss J.R., Swift G.M., Selva L.E. et al. // IEEE Radiation Effects Data Workshop Record. ISBN: 0–7803–5109–6. 1998. P. 15–38.