13

Особенности электронной структуры наноразмерных ионно-имплантированных слоев в кремнии

© А.С. Рысбаев, Ж.Б. Хужаниязов, М.Т. Нормурадов, А.М. Рахимов, И.Р. Бекпулатов

Ташкентский государственный технический университет, 100011 Ташкент, Узбекистан e-mail: rysbaev@mail.ru

(Поступило в Редакцию 16 января 2014 г.)

Методами фото- и вторичной электронно-электронной спектроскопии исследовано влияние имплантации ионов Ва, Р, В и щелочных элементов с низкой энергией ($E_0 < 5 \,\mathrm{keV}$) на электронную структуру тонкой приповерхностной области монокристаллов Si(111) p и n-типа. Показано, что высокодозная ионная имплантация независимо от типа иона приводит к резкому сужению ширины запрещенной зоны кремния, что объясняется перекрытием волновых функций электронов атомов примеси и образованием примесной подзоны, которая перекрывается с разрешенной зоной. После имплантационного термического отжига авторами впервые получены пленки SiP, BaSi, SiB₃ с наноразмерными толшинами. Определены оптимальные режимы ионной имплантации и последующего отжига для формирования силицидных пленок и исследована их электронная структура.

Введение

В последние годы для модификации свойств поверхности и синтеза новых материалов, обладающих в ряде случаев уникальными свойствами, используется высокодозная ионная имплантация [1–3]. Так, в работах [4,5] при имплантации ионов Р и В с энергией $E_0 =$ и дозой $D = 10^{17} - 10^{18}$ $= 80 - 100 \, \text{keV}$ sm^{-2} в кремний и проведением последующего отжига при T = = 900-1100 К в приповерхностной области Si были обнаружены выделения второй фазы, или так называемые преципитаты, идентифицированные авторами как соединения SiP и SiB_{2.5-6}. Однако исследовать электронную структуру и свойства этих образований авторам не удалось в связи с тем, что они имели островковый характер.

Вместе с тем проведением высокодозной имплантации ионов с низкой энергией ($E_0 \leq 5 \text{ keV}$) в Si и последующим кратковременным отжигом возможно получение сплошных пленок силицидов.

Целью настоящей работы является исследование изменения электронной структуры поверхности кремния в процессе имплантации ионов Ва, Р и В и последующем термическом отжиге. Важность исследования электронной структуры поверхности связана с тем, что многие свойства материалов определяются состоянием их поверхности, а именно ее электронной структурой. Поверхностные электронные свойства полупроводников, в частности Si, находятся в центре внимания многих исследователей. Нарушение периодичности на поверхности кристалла, как показано в фундаментальных работах Тамма и Шокли [6], приводит к появлению новых энергетических состояний, называемых собственными состояниями. Здесь следует отметить, что собственные поверхностные состояния присущи свободной поверхности кристалла в отличие от несобственных поверхностных состояний, обусловленных присутствием на поверхности посторонних атомов или краевых поверхностных состояний, вызванных наличием дефектной структуры в приповерхностной области кристалла. Последнее может иметь место в ионно-имплантированных слоях кремния при очень малых дозах ионной имплантации.

При этом следует ожидать появления донорных или акцепторных примесных уровней в запрещенной зоне кремния. Ионная имплантация приводит к нарушению кристаллической структуры исходного кремния вплоть до аморфизации. Последующий термический отжиг может приводить к образованию твердых растворов внедрения или замещения, что имеет место при имплантации малых доз ионов Р и В, или химических соединений, что может наблюдаться при имплантации больших доз ионов Р, В, Ва. Из всего многообразия процессов, происходящих при имплантации ионов в кремний, основное наше внимание было обращено исследованию влияния имплантации ионов больших доз на электронно-зонную структуру кремния.

1. Методика экспериментальных измерений

Экспериментальные измерения проводили в приборе с анализатором типа сферического зеркала с тормозящим полем, позволяющим исследовать поверхность методами электронной оже-спектроскопии (ЭОС), спектроскопии упруго рассеянных электронов (СУРЭ), фото-электронной спектроскопии (ФЭС) и дифракции медленных электронов (ДМЭ) при давлении остаточных газов не более 10^{-7} Ра [7,8]. В качестве объектов исследования были выбраны монокристаллы Si(111) *n*- и *p*-типа с удельным сопротивлением 6000 От \cdot sm. Очистку образцов проводили термическим прогревом в два этапа: длительно при температуре 1200 К в течение 60 min и кратковременно при 1500 К в течение 1 min.

2. Результаты и их обсуждение

Исследованиями изменения состояния поверхности Si при ионной имплантации методами ЭОС и ДМЭ установлено, что начиная с дозы, соответствующей аморфизации приповерхностной области Si, наблюдается изменение формы и положения оже-пика SiL23VV (рис. 1). На рис. 1 приведены спектры ЭОС для чистой поверхности Si(111) (кривая 1) и Si, имплантированного ионами Ba⁺(2), Na⁺(3), P⁺(4) и B⁺ (кривая 5) с энергией $E_0 = 1 \text{ keV}$ и дозой $D = 6 \cdot 10^{16} \text{ sm}^{-2}$. Видно, что при больших дозах ионной имплантации оже-пик SiL_{22VV} превращается из синглентной формы в дублетную. Причем заметное изменение формы пика Sil 22 VV наблюдается, начиная с дозы, соответствующей аморфизации приповерхностного слоя Si $D = 10^{14} - 10^{15} \text{ sm}^{-2}$. Наблюдаемые изменения в спектрах ЭОС мы связываем с частичным образованием химического соединения между атомами Si и атомами внедренной примеси.

Однако следует отметить, что дублетная форма оже-пика SiL23VV характерна также и для изолированного атома кремния. Например, в работе [9] авторы наблюдали подобное явление при бомбардировке поверхности Si(111) ионами Ar⁺. В нашем случае такое изменение формы оже-пика SiL23VV однозначно связано с образованием химического соединения между атомами примеси и кремния. В общем случае примесные атомы в Si могут образовать твердые растворы внедрения или замещения, а также химические соединения. Твердые растворы замещения, согласно [10], образуются лишь в том случае, когда радиусы атомов примеси и атомов матрицы различаются не более чем на 15%. Радиусы атомов Р и Si составляют 1.17 и 1.10 Å соответственно, т.е. удовлетворяют условию образования твердого раствора замещения. Твердые растворы внедрения образуются в случае, если радиус атома примеси не превышает $\sim 60\%$ от радиуса атома матрицы. Если же один из атомов обладает намного большей электроотрицательностью, чем другой, то возникает химическое соединение. Атомы Ва и щелочных элементов электроположительны по отношению к Si и поэтому они легко отдают свои электроны и образуют химическое соединение с атомами Si. Образование химического соединения между атомами Ва (или щелочных элементов) и кремния происходит, начиная с дозы $D > D_a \approx (2-5) \cdot 10^{15} \, {
m sm}^{-2}$, т.е. когда концентрация атомов примеси сравнима с концентрацией атомов матрицы. Такая ситуация легко достигается при имплантации ионов низких энергий. В случае имплантации ионов Р и В образование химического соединения в виде преципитатов (отдельных выделений) SiP и SiB_r наблюдали в работах [11–15]. В нашем случае пленки силицида бора SiB3 и фосфида кремния SiP были получены имплантацией ионов В и Р с низкой энергией $E_0 < 5 \, {\rm keV}$ и большой дозой облучения $D = 10^{17} \, {\rm sm}^{-2}$ с последующим термическим или лазерным отжигом. Отметим, что полное формирование силицидов происходило в результате послеимплантационного отжига.

Рис. 1. Спектры ЭОС для чистого Si(111) — (спектр *1*), для Si, имплантированного ионами с энергией $E_0 = 1 \text{ keV}$ и дозой $D = 6 \cdot 10^{16} \text{ sm}^{-2}$: Ba⁺ (спектр 2), Na⁺ (3), P⁺ (4) и B⁺ (5).

Тип образующихся химических соединений нами определялся по концентрационным профилям распределения атомов по глубине, снятым при послойном стравливании поверхности пучком ионов Ar⁺ с энергией 2 keV, падающих под углом 15° к поверхности. Образование новых силицидных пленок после прогрева ионноимплантированных образцов подтверждается также формированием новых поверхностных сверхструктур, таких как Si(111) -1×1 Ba, Si(100) -2×4 Na, Si(111) -4×4 Li, Si(111) $-1 \times 1P$, Si(111) $-(\sqrt{3} \times \sqrt{3})R30^{\circ}-B$ и др. Для исследования изменения электронной структуры поверхности Si при имплантации B, P, Ba и щелочных элементов мы использовали методы ФЭС и СУРЭ. На рис. 2 и 3 приведены спектры ФЭС и СУРЭ Si, снятые в процессе имплантации ионов Р с энергией 1 keV с различной дозой облучения. Видно, что имплантация ионов приводит к существенному изменению плотности электронных состояний в валентной зоне и зоне проводимости кремния: наблюдается сдвиг максимумов плотности состояний валентных электронов, изменяется их форма, появляются новые максимумы, изменяется плотность свободных состояний и частота плазменных колебаний валентных электронов Si, а также происходит существенное изменение параметров зонной структуры [16].

Рис. 2. Спектры ФЭС для Si(111) *р*-типа, имплантированного ионами P⁺ с $E_0 = 1$ keV с различной дозой D, sm⁻²: 0 — (кривая I), 5 · 10¹⁴ (2), 5 · 10¹⁵ (3), 6 · 10¹⁶ (4).

Рис. 3. Спектры СУРЭ для чистого Si (кривая *I*) и Si, имплантированного ионами P⁺ с $E_0 = 1 \text{ keV c } D, \text{ sm}^{-2}$: $5 \cdot 10^{14}$ (2), $5 \cdot 10^{15}$ (3), $6 \cdot 10^{16}$ (4).

На рис. 4, *a*-*d* приведены модели зонной диаграммы Si(111) *p*-типа, имплантированного ионами Ba⁺ с $E_0 = 1$ keV с разными дозами D, sm⁻²: 0 — *a*, 10¹⁴ — *b*, 10¹⁵ — *c*, 6 · 10¹⁶ — *d*, и после термического отжига при T = 1000 K — *e*, построенные без учета изгиба зон, формирующегося вследствие частичной адсорбции атомов Ва на поверхности и образования двойного электрического слоя.

В результате имплантации ионов Ва с дозой $D < 1 \cdot 10^{14} \, {\rm sm}^{-2}$, когда еще не происходит заметного разупорядочения приповерхностного слоя в запрещенной зоне Si, появляются отдельные мелкие донорные уровни бария, которые частично компенсируют акцепторные уровни бора. Такая картина может иметь место в случае изолированных примесных атомов бария, когда не перекрываются их силовые поля и волновые функции электронов локализованы на дискретных уровнях. Это

имеет место, если концентрация бария $N_{\rm Ba}$, боровский радиус в кристалле $a_{\rm B}$ и радиус экранирования r_0 удовлетворяют условиям

$$N_{\rm Ba}^{1/3} \gg r_0, \quad N_{\rm Ba}^{1/3} \gg a_{\rm B},$$
 (1)

где $a_{\rm B} = \varepsilon h^2 / m e^2$, е и m — заряд и масса электрона, ε — диэлектрическая проницаемость среды.

При $D = 1 \cdot 10^{14} \, {\rm sm}^{-2}$ происходит почти полная компенсация электрически активных акцепторных уровней бора и уровень $E_{\rm F}$ устанавливается в середине запрещенной зоны. После этой стадии ионной имплантации поверхностный слой обладает следующими параметрами: работа выхода электронов $e\varphi = 4.4 \, {\rm eV}$, сродство к электрону $\varkappa = 3.9 \, {\rm eV}$, ширина запрещенной зоны $E_g = 1.1 \, {\rm eV}$. С дальнейшим увеличением дозы $D > 1 \cdot 10^{14} \, {\rm sm}^{-2}$ число донорных уровней резко возрастает, происходит перекомпенсация акцепторных уровней и инверсия типа проводимости Si (рис. 4, *c*).

При повышении концентрации $N_{\rm Ba}$ сильные неравенства (1) перестают выполняться. Прежде всего нарушается первое неравенство и локализованный вблизи одного примесного атома электрон начнет испытывать воздействие со стороны других атомов примеси. В результате его энергетический уровень сдвигается по энергии и в запрещенной зоне вместо одного уровня появляется некоторый дискретный набор, т.е. проявляется известный эффект классического уширения уровней [17].

При дальнейшем увеличении дозы $D > 10^{15}$ sm⁻² концентрация $N_{\rm Ba}$ возрастает и начинает нарушаться и второе неравенство (1). При этом становится заметным перекрытие волновых функций электронов, локализованных на различных атомах примеси, и донорный уровень бария превращается в примесную подзону. Данный эффект известен как эффект квантового уширения уровней [18]. В результате происходит сужение запрещенной зоны. Напомним, что начиная с этой дозы происходит заметное разупорядочение приповерхностного слоя и формирование силицидных фаз. При дозе облучения $D = 6 \cdot 10^{16}$ sm⁻² примесная зона бария перекрывается

Рис. 4. Модели зонной диаграммы для Si(111) *p*-типа, имплантированного ионами Ba⁺ с $E_0 = 1$ keV с разными дозами D, sm^{-2} : 0 — $a, 10^{14}$ — $b, 10^{15}$ — $c, 6 \cdot 10^{16}$ — d, e — после термического отжига ионно-имплантированного Si при T = 1000 K.

с зоной проводимости и уровень Ферми $E_{\rm F}$ оказывается в зоне проводимости ионно-имплантированного Si. Ширина запрещенной зоны $E_g = 0.7 \, {\rm eV}$, $e\varphi = \varkappa = 3.2 \, {\rm eV}$. То есть зонная диаграмма ионно-имплантированного Si становится аналогичной диаграмме, характерной для сильно вырожденного полупроводника (рис. 4, *d*). Следует отметить, что в сужение запрещенной зоны Si при имплантации больших доз ионов Ba, кроме образования химического соединения, дают также вклад и дефекты, образующиеся вследствие сильного разупорядочения кристаллической решетки.

Вблизи потолка валентной зоны E_v формируются дефектные уровни, число которых пропорционально концентрации дефектов. Однако вклад последнего в сужение запрещенной зоны, а также в сдвиг максимумов плотности состояний валентных электронов Si не превышает 0.10, 0.15 eV.

На рис. 5, а-е приведены модели зонной диаграммы Si(111) *п*-типа, имплантированного ионами P⁺ с $E_0 = 1$ keV, с разной дозой облучения D, sm⁻² : 0 — a, $2 \cdot 10^{14}$ — b, $5 \cdot 10^{15}$ — c, $8 \cdot 10^{16}$ — d и после термического отжига T = 1100 K — e. На диаграмме для чистого Si, легированного фосфором, донорный уровень локализован на 0.045 eV ниже дна зоны проводимости. К сожалению, методы СУРЭ, ФЭС, ХПЭ не позволяют зарегистрировать такие мелкие уровни в запрещенной зоне Si. Имплантация ионов P с $E_0 = 1 \text{ keV}$ и дозой $2 \cdot 10^{14} \, \mathrm{sm}^{-2}$ приводит к возникновению ряда дискретных донорных уровней. При этом параметры зонной структуры Si(111) практически не изменяются (рис. 5, b). Дальнейшее увеличение D приводит к образованию донорной подзоны, которая перекрывается с зоной проводимости (рис. 5, с и d) при дозе $D = 8 \cdot 10^{16} \,\mathrm{sm}^{-2}$ сродство к электрону уменьшается до 3 eV, а ширина запрещенной зоны $E_g = 0.8$ eV. То есть в этом случае так же, как и в случаях имплантации ионов Ва и щелочных элементов, происходит сужение запрещенной зоны. Кратковременный отжиг Si(111), имплантированного ионами Р при T = 1100 К приводит к образованию в приповерхностной области нового химического соединения — фосфида кремния SiP, с присущей ей и отличной от Si зонной диаграммой (рис. 5, e). Примечательной особенностью пленки SiP является то, что ширина ее запрещенной зоны составляет 1.45 eV и близка к ширине запрещенной зоны GaAs ($E_g = 1.4 \, \text{eV}$).

При этом параметры и тип кристаллической решетки SiP незначительно отличаются от параметров кремния, что позволяет использовать их в качестве гетеропереходных структур с различной шириной запрещенной зоны. В случае имплантации ионов P в Si(111) p-типа, так же как и в случае имплантации ионов Ва, вначале происходит компенсация объемных акцепторных уровней исходного кремния, затем инверсия проводимости ионно-имплантированной поверхностной области. При больших дозах ионной имплантации образуется донорная подзона и параметры зонной структуры в точности совпадают с параметрами, приведенными на рис. 5, d.

Рис. 5. Модели зонной диаграммы для Si(111) *n*-типа, имплантированного ионами P⁺ с $E_0 = 1 \text{ keV}$ с разными дозами D, sm^{-2} : 0 — $a, 2 \cdot 10^{14}$ — $b, 5 \cdot 10^{15}$ — $c, 8 \cdot 10^{16}$ — d, e — после термического отжига ионно-имплантированного Si при T = 1100 K.

Рис. 6. Модели зонной диаграммы для Si(111) *n*-типа, имплантированного ионами B⁺ с $E_0 = 1 \text{ keV}$ с разными дозами D, sm^{-2} : 0 — $a, 4 \cdot 10^{14}$ — $b, 4 \cdot 10^{15}$ — $c, 3 \cdot 10^{16}$ — $d, 2 \cdot 10^{17}$ — e, e — после термического отжига ионно-имплантированного Si при T = 1200 K.

Таким образом, можно сделать вывод, что при имплантации ионов Ва, Р и щелочных элементов с низкой энергией $E_0 < 5 \text{ keV}$ и большой дозой независимо от типа проводимости исходного кремния в запрещенной зоне образуется примесная донорная подзона, которая перекрывается с зоной проводимости, то есть образуется сильно вырожденный полупроводник с донорным типом проводимости.

На рис. 6, *a*–*e* приведены модели зонной диаграммы для Si(111) *n*-типа, имплантированного ионами B⁺ с $E_0 = 1$ keV, с разной дозой D, sm⁻²: 0 — a, $4 \cdot 10^{14}$ — b, $4 \cdot 10^{15}$ — c, $3 \cdot 10^{16}$ — d и после отжига при T = 1200 K — e. В данном случае, имплантация ионов B с дозой $D = 4 \cdot 10^{14}$ sm⁻² (рис. 6, *b*) приводит сначала к компенсации проводимости исходного кремния, а затем к образованию акцепторных уровней, которые при большой дозе $D > 3 \cdot 10^{16}$ sm⁻² (рис. 6, *d*) расщепляются в акцепторную подзону, перекрывающуюся с валентной зоной. В результате этого уровень $E_{\rm F}$ попадает в валентную зону, происходит сужение запрещенной зоны Si до 0.9 eV. То есть при имплантации ионов B⁺ с большой зоной в поверхностной области Si образуется вырожден-

Тип силицидов	Параметры							
	$E_{pm},$ eV	σ_m	$e\phi, \\ eV$	Ф, eV	χ, eV	E_g, eV	Тип поверхностной структуры	<i>Т</i> , К
BaSi	460	3.2	2.75	3.1	2.4	0.7	$Si(100)-2 \times 2Ba$	800
BaSi	440	3.0	2.35	3.0	2.3	0.7	$Si(111) - 1 \times 1Ba$	900
NaSi	450	3.0	2.8	3.2	2.5	0.65	$Si(111)-1 \times 1Na$	650
NaSi ₂	430	2.8	2.8	3.1	2.5	0.6	$Si(100) - 2 \times 4Na$	700
LiSi	440	2.8	2.0	3.2	2.4	0.8	$Si(111)-4 \times 4Li$	900
RbSi	450	4.3	2.65	3.0	2.3	0.7	$Si(111)-2 \times 2Rb$	800
CsSi	470	4.5	2.6	3.0	2.2	0.85	$Si(111)-1 \times 1Cs$	600
SiP	350	2.2	3.5	4.9	3.45	1.45	$Si(111)-1 \times 1P$	1100
SiB_3	320	2.4	4.75	4.8	3.5	1.3	$Si(111) - (\sqrt{3} \times \sqrt{3})R30^{\circ} - B$	1200

Значения вторчно-эмиссионных и структурных параметров силицидов

Примечание. σ_m — значение максимального коэффициента вторичной электронно-электронной эмиссии, E_{pm} — значение первой критической энергии, $e\varphi$ и Ф— термоэлектронная и фотолектронная работы выхода, χ — сродство к электрону, E_g — ширина запрещенной зоны.

ный полупроводник с дырочной проводимостью. Следует отметить, что в этом случае, также как при имплантации ионов Ва и Р с большой дозой, конечный результат не зависит от типа проводимости исходного кремния.

Кратковременный прогрев ионно-имплантированного Si приводит к образованию соединения силицида бора SiB₃ с зонной структурой, показанной на рис. 6, *е*. Как видно из диаграммы, ширина запрещенной зоны SiB₃ составляет 1.3 eV, т. е. также близка к ширине запрещенной зоны GaAs. Пленки SiB₃, полученные на поверхности монокристалла Si(111) имплантацией низкоэнергетических ионов B также могут быть использованы в качестве гетеропереходной структуры SiB₃—Si в технологии изготовления интегральных схем на основе кремния.

Следует отметить, что при имплантации больших доз ионов примеси донорного (или акцепторного) типа новые подзоны возникают как вблизи дна зоны проводимости, так и вблизи потолка валентной зоны. Причем появление последней в случае донорной примеси связано с дефектами кристаллической решетки. Этот эффект известен как эффект появления хвостов плотности состояний в запрещенной зоне кремния. То есть сужение запрещенной зоны кремния при сильном легировании происходит одновременно как со стороны границы с зоной проводимости, так и со стороны валентной зоны.

Еще одной особенностью сильного легирования является "гофрировка зон", возникающая вследствие того, что носители заряда в них движутся в случайном поле примеси. И это поле представляет собой совокупность случайно расположенных трехмерных потенциальных ям и горбов случайной высоты и формы.

Аналогичные зонно-энергетические диаграммы нами были построены для образцов Si, имплантированных ионами Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺ и их силицидов. На основе построенных диаграмм нами определены параметры электронной структуры пленок силицидов, сформированных в приповерхностном слое Si ионной имплантацией (таблица).

В таблице приведены значения максимального коэффициента вторичной электронно-электронной эмиссии σ_m , первой критической энергии E_{pm} , термоэлектронной $e\phi$ и фотоэлектронной Φ работы выхода, сродства к электрону χ и ширины запрещенной зоны E_g силицидов Р, В, бария и щелочных металлов, полученных после термического отжига. Там же приведены температура отжига, при которой образуются поверхностные структуры, и тип структур. Как видно из таблицы, отжиг ионно-имплантированных образцов приводит к образованию силицидов металлов с монокристаллической структурой, обладающих лучшими вторично-эмиссионными свойствами, чем Si. Для сравнения σ_m и E_{pm} для чистого кремния равны 0.98 и 340 eV соответственно. Сравнительно высокие значения коэффициента σ_m силицидов обусловлены как увеличением глубины эмиттирующей области, так и дополнительным снижением работы выхода из-за расположения атомов металла на поверхности.

Заключение

Таким образом показано, что имплантация ионов Р, В, Ва и щелочных элементов с низкой энергией $E_0 = 1 - 5 \,\mathrm{keV}$ и большой дозой $D = 10^{16} \,\mathrm{sm}^{-2}$ приводит к аморфизации приповерхностного слоя Si и к частичному образованию химического соединения между атомами кремния и внедренной примеси. При этом независимо от типа проводимости исходного кремния и вида имплантируемых ионов при больших дозах $D = 10^{16} \,\mathrm{sm}^{-2}$ уровень Ферми E_{F} оказывается локализованным в разрешенной зоне, наблюдается сужение запрещенной зоны. Последующий кратковременный прогрев в течение 1-2 min приводит к формированию тонких монокристаллических пленок силицидов Р, В, Ва и щелочных элементов с новой поверхностной сверхструктурой: Si(100) $-2 \times 2Ba$, Si(111) $-1 \times 1Ba$, $Si(100)-2 \times 4Na$, $Si(111)-4 \times 4Li$, $Si(111)-2 \times 2Rb$, Si(111) $-1 \times 1P$, Si(111) $-(\sqrt{3} \times \sqrt{3})R30^{\circ} -B$. Ha ochobe проведенных исследований определены оптимальные режимы для формирования тонких силицидных пленок и характеристики их энергетических зон.

Работа выполнена при финансовой поддержке Государственного гранта фундаментальных исследований Ф-2-31 Республики Узбекистан.

Список литературы

- Rysbaev A.S., Nasriddinov S.S., Yuldashev Yu.Yu., Djuraev Sh.H., Rahimov A., Shaymanova N., Mirzaeva F.A. // Thin silicide films: producing and properties. 8-th international Conference Solid state physics. Abstracts. Almaty. 2004. P. 353–354.
- [2] Король В.М., Кудрявцев Ю. // ФТП. 2012. Т. 46. Вып. 2. С. 268–273.
- [3] Кривелевич С.А., Маковийчук М.И., Пармин Е.О. // Микроэлектроника. 1999. Т. 28. № 5. С. 363–370.
- [4] Monch W. // Surf. Sci. 1979. Vol. 86. P. 672-699.
- [5] Aumidliato A., Nobili D., Ostoja P., Servidore M., Whelan M.J. Semiconductor silicon. 1977. 638 p.
- [6] *Тамм И.Е.* Основы теории электричества. М.: Наука, 1976. 320 с.
- [7] *Рысбаев А.С.* // Радиотехн. и электрон. 2001. Т. 46. № 7. С. 883–885.
- [8] Нормурадов М.Т., Руми Д.С., Рысбаев А.С. Изв. АН УзССР. Сер. Физ-мат. 1986. № 4. С. 70–73.
- [9] Запорожченко В.И., Матин Е.Н., Степанова М.Г. // Поверхность. 1996. № 8. С. 77-84.
- [10] Аброян И.А., Андронов А.Н., Титов А.И. Физические основы электронной и ионной технологии. М.: Высшая школа, 1984. 219 с.
- [11] Зорин Е.И., Павлов П.В., Тетельбаум Д.И., Хохлов А.Ф. Исследование энергетических уровней примесных атомов в кремнии при ионном легировании. Легированные полупроводники. М.: Наука, 1975. С. 15–18.
- [12] Прохоров В.И., Соколов В.И., Сорокин М.М. Реагенная диффузия фосфора в кремнии. Легированные полупроводниковые материалы. М.: Наука, 1985. С. 76.
- [13] Самкурашвили Т.В., Байрамашвили И.А., Александрия Б.В. Получение и исследование структуры тонких пленок бора. Бор: получение, структура и свойства. М.: Наука, 1974. С. 142–144.
- [14] Headrick R.L., Robinson L.K., Vlieg E., Feldman L.C. // Phys. Rev. Lett. 1989. Vol. 63. № 12. P. 1253.
- [15] Атомная диффузия в полупроводниках / Под ред. Шоу. М.: Мир, 1975. 684 с.
- [16] Рысбаев А.С., Нормурадов М.Т., Хужаниезов Ж.Б., Ташатов А.К., Юлдашев Ю.Ю., Холиков Ю.Д., Насриддинов С.С. Радиотехн. и электрон. 2007. Т. 52. № 8. С. 969–972.
- [17] Полинг Л. Природа химических связей. М.: Госхимиздат, 1947.
- [18] Бонч-Бруевич В.Л., Калашников С.Г. Физика проводников. М.: Наука, 1990. 688 с.