06

О возможности элементного анализа кристаллических твердых тел методом дифракции рентгеновских лучей

© В.М. Стожаров

Российский государственный педагогический университет им. А.И. Герцена, 191186 Санкт-Петербург, Россия e-mail: gut1111@yandex.ru

(Поступило в Редакцию 10 сентября 2013 г.)

Предложен новый метод элементного анализа кристаллических твердых тел методом дифракции ренттеновских лучей. На примере образцов природного алюмисиликата и окислов титана показана возможность применения метода к многокомпонентным полиморфным системам, включая широкий диапазон анализируемых элементов и количественное определение их массовых концентраций без помощи внешнего или внутреннего стандарта.

Введение

В настоящее время основным методом элементного анализа твердых тел является рентгенофлуоресцентный анализ, впервые примененный А. Халдингом в 1922 г. для определения химического состава минералов. В 60–70-е годы прошлого столетия созданы вакуумные рентгенофлуоресцентные спектрометры и квантометры, с помощью которых оказался возможным количественный анализ элементов от натрия до урана [1,2]. Особенностью этого метода является существование двух конкурирующих процессов перехода возбужденного атома в основное состояние — излучения кванта рентгеновской флуоресценции с вероятностью w_v и эмиссии оже-электрона с вероятностью w_e , соотношение между которыми определяется простой формулой

$$w_v + w_e = 1. (1)$$

С уменьшением порядкового номера элемента Z вероятность w_v стремится к нулю при Z<10 [3]. Таким образом, рентгенофлуоресцентный анализ неприменим к элементному анализу легких элементов первого и второго периодов периодической системы элементов Д.И. Менделеева. Кроме того, для количественного рентгенофлуоресцентного анализа требуется внешний или внутренний стандарт на каждый анализируемый элемент в пробе.

Принципы элементного анализа методом рентгеновской дифрактометрии

Предлагаемый в настоящей работе метод элементного анализа с помощью рентгеновской дифрактометрии обеспечивает регистрацию элементов от водорода до урана с высокой чувствительностью и не требует применения внешнего или внутреннего стандарта, что значительно упрощает технику анализа.

Элементный анализ веществ со сложным составом основан на использовании интенсивностей брэгговских рефлексов, соответствующих в общем случае различным минералам, и атомных факторов рассеяния рентгеновских лучей атомами этих минералов.

На первом этапе элементного анализа исходная дифрактограмма исследуемого многокомпонентного образца подвергается первичной обработке с целью выделения для каждого брэгговского пика монохроматической линии $\text{Cu}K_{\alpha 1}$ с наибольшей интенсивностью и с длиной волны $\lambda=1.5406~\text{Å}$. Затем с помощью обширной рентгенотеки для каждого монохроматического брэгговского рефлекса с длиной волны $\lambda=1.5406~\text{Å}$ определяется минерал с известным химическим составом с угловой точностью не более 0.05%. Полученные данные используются для расчета концентрации минералов, содержащихся в исследуемом образце. С этой целью сначала рассчитываются относительные интенсивности i_g каждого g-го брэгговского пика (отнесенные к брэгговскому пику с максимальной интенсивностью I_{max}) по формуле

$$i_g = \frac{I_g}{I_{\text{max}}}, \quad (g = 1, 2, 3, \dots k),$$
 (2)

где k — число всех брэгтовских пиков на дифрактограмме.

Полученные относительные интенсивности затем складываются по всем минералам с учетом их кратности и отсюда рассчитывается концентрация c_1 i-го минерала по формуле

$$c_1 = \frac{\sum_{l=1}^{m_i} i_{il}}{\sum_{l=1}^{n} \sum_{l=1}^{m_i} i_{il}} 100\%,$$
 (3)

где m_i — кратность i-го минерала, т.е. число брэгговских пиков, соответствующих i-му минералу, n — число минералов в образце.

На втором этапе элементного анализа рассчитываются парциальные концентрации минералов c_{ig} , т.е. концентрации каждого i-го минерала, отнесенные к разным

углам Брэгга по формуле

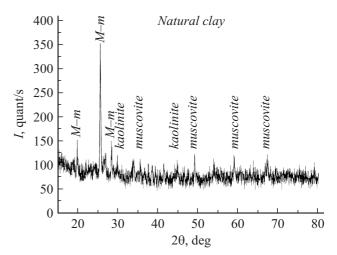
$$c_{ig} = \frac{I_{ig}}{\sum_{g=1}^{m_i} I_{ig}} c_i \%, \tag{4}$$

где I_{ig} — интенсивность, соответствующая i-му минералу при g-м угле Брэгга, m_i — кратность i-го минерала.

На третьем этапе элементного анализа для расчета концентраций элементов, входящих в состав образца, необходимо прежде всего с учетом химического состава минералов и с помощью таблиц атомных форм-факторов [4] пересчитать атомные форм-факторов f_{ig} для всех j-х элементов минералов и для каждого брэгтовского угла. Затем для каждого угла Брэгга вычислить сумму атомных форм-факторов, соответствующих ему элементов, с учетом их стехиометрических коэффициентов x_{gj} . После этого для каждого угла Брэгга Θ_g определяется парциальная концентрация элементов Y_{ig} j-го элемента в i-м минерале по формуле

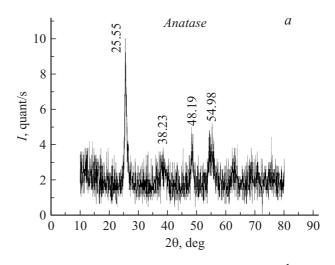
$$Y_{ijg} = \frac{x_{gjfjg}}{\sum\limits_{i=1}^{p} x_{gjfjg}} c_{ig}\%, \tag{5}$$

где p — число всех j-х элементов при g-м брэгговском угле.


Для окончательного решения задачи количественного элементного анализа необходимо сложить полученные на третьем этапе парциальные концентрации каждого j-го элемента по всем углам Брэгга и таким образом получить концентрацию каждого j-го элемента Y_j в образце. Расчет концентраций элементов производится по формуле

$$Y_j = \sum_{g=1}^{k_j} Y_{jg}(\Theta_g)\% \quad (j = 1, 2, 3, \dots h),$$
 (6)

где k_j — число брэгтовских пиков, содержащих j-й элемент, h — число всех элементов в образце.


Практическое применение элементного анализа методом рентгеновской дифрактометрии

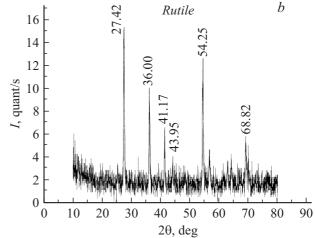

Элементный анализ методом дифракции рентгеновских лучей был использован для исследования типичных природных алюмосиликатов (глины Луковского месторождения Псковской обл.), отожженных при разных температурах [5]. Рентгенофазовый анализ образцов приведен с использованием дифрактометра "Дрон-7" с медным анодом ($\lambda=1.5406\,\mathrm{\AA}$) и с сопряженным с рентгеновской трубкой параболическим зеркалом, которое обеспечивает 100%-ное подавление эмиссионной линии рентгеновского спектра $\mathrm{Cu}K_\beta$ с длиной волны $\lambda=1.3922\,\mathrm{\AA}$ и параксиальность пучка рентгеновского излучения, падающего на образец, с расходимостью не

Рис. 1. Дифрактограмма исходной неотожженой глины с указанием минералогического состава. M-m—монтмониллонит.

более 0.01° . В настоящей работе в качестве примера приводятся результаты элементного и минералогического анализов исходной глины. На рис. 1 приведена

Рис. 2. Дифрактограммы анатаза и рутила с указанием угла рассеяния рентгеновских лучей 2 Θ в deg.

50 В.М. Стожаров

Таблица 1. Качественный фазовый анализ исходной псковской глины и концентрации минералов

Nο	2Θ, deg	Каолинит	Монтмониллонит	Мусковит	Δ , deg
1	21.8776		21.929°		0.0514
2	27.5849		27.594°		0.0091
3	30.3512		30.341°		0.0102
4	35.9450	35.941°			0.0004
5	37.4696			37.470°	0.0040
6	43.3330	43.337°			0.0003
7	51.0537			51.054°	0.0002
8	60.9342			60.934°	0.0040
9	69.2444			69.266°	0.0216
Концентрация		10,9%	60.2%	28.9%	

Таблица 2. Массовые концентрации элементов, содержащиеся в исхолной глине

Nº	Название элемента	Химический символ элемента	Концентрация элемента в %
1	Кислород	О	48.1028
2	Кремний	Si	23.8579
3	Алюминий	Al	15.6270
4	Магний	Mg	5.115
5	Калий	K	2.6651
6	Натрий	Na	1.7036
7	Водород	Н	1.3576
8	Кальций	Ca	0.5786
9	Железо	Fe	0.2745
10	Фтор	F	0.0213

Таблица 3. Сравнение элементного состава анатаза и рутила

Ана	атаз	Рутил	δ%
2Θ, deg	25.5522	27.4424	
Ti	57.91%	58.26%	0.6
O	42.09%	41.74%	0.8

дифрактограмма этой глины с указанием ее минералогического состава. Результаты качественного фазового анализа глины и расчета концентраций минералов приведены в табл. 1, где также указана угловая погрешность Δ качественного фазового анализа. В табл. 2 приведены массовые концентрации элементов, входящих в состав минералов исходной глины, рассчитанные по формуле (6). Из табл. 2 следует, что в трех минералах исходной глины содержится десять разных элементов, из которых основными с концентрацией более 10% являются три элемента: кислород, кремний и алюминий.

Возможная неопределенность в определении массовой концентрации атомов образца может быть связана с полиформизмом кристаллической структуры. Для ее оценки в качестве примера исследована двуокись титана TiO₂, которая существует в двух основных формах: анатаза и рутила, отличающихся друг от друга параметрами элементарной ячейки [6]. На рис. 2 представлены дифрактограммы анатаза и рутила с указанием углов рассеяния. Для первых наиболее интенсивных дифракционных пиков анатаза и рутила по формулам (2)-(6) рассчитан элементный состав анатаза и рутила. Результаты расчета приведены в табл. 3. Оценка неопределенности в определении концентрации атомов в полиморфной двуокиси титана, продемонстрированная в табл. 3, показывает практическую возможность элементного анализа в условиях полиморфизма с малой относительной погрешностью δ порядка нескольких десятых процента.

Заключение

Таким образом, предлагаемый метод элементного анализа с помощью дифракции рентгеновских лучей позволяет количественно анализировать элементы в пробе в широком диапазоне от водорода до урана с высокой чувствительностью без необходимости применения внешнего или внутреннего стандарта. Последнее обстоятельство существенно упрощает практическое применение количественного элементного анализа. Метод элементного анализа с помощью дифракции рентгеновских лучей можно использовать для исследования минералогического и элементного составов любых многокомпонентных полиморфных систем. Как показали измерения концентрации титана и кислорода в двухкомпонентной системе двуокиси титана, полиморфизм этой системы, выражающейся в формах анатаза и рутила, приводит к незначительной погрешности порядка десятых долей процента и позволяет также практически анализировать элементный состав таких систем.

Список литературы

- [1] Афонин В.П., Комяк Н.И., Николаев В.П., Плотников Р.И. Рентгенофлуоресцентный анализ. Новосибирск: Наука, 1991. 173 с.
- [2] Афонин В.П., Гуничева Т.Н., Пискунов Л.Ф. Рентгенофлуоресцентный силикатный анализ. Новосибирск: Наука, 1984. 225 с.
- [3] Миркин Л.И. Справочник по рентгеноструктурному анализу поликристаллов. М.: Физматлит, 1961. 863 с.
- [4] Авдюхина В.М., Батсурь Д., Зубенко В.В., Кациельсон А.А. Рентгенография. Спецпрактикум. М.: МГУ, 1986. С. 24–31.
- [5] Иванова Е.Н., Гавронская Ю.Ю., Стожаров В.М., Пак В.Н. // ЖОХ. 2014. Т. 84. № 2. С. 185–188.
- [6] *Вахрушев А.Ю., Горбунова В.В., Бойцова Т.Б., Стожаров В.М., Луканина Т.Л.* Неорганические материалы. 2013. Т. 49. № 12. С. 1311–1315.