06

Специальные резориентации в областях локализации деформации в монокристаллах сплава Fe-3%Si

© Г.М. Русаков,^{1,2} М.Л. Лобанов,¹ А.А. Редикульцев,¹ М.С. Карабаналов,¹ Л.В. Лобанова¹

 ¹ Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, 620002 Екатеринбург, Россия
 ² Институт физики металлов УрО РАН, 620219 Екатеринбург, Россия e-mail: redikultsev@mail.ru

(Поступило в Редакцию 9 августа 2013 г.)

При значительных степенях деформации (~ 60%) и наличии развитой мезоструктуры в монокристалле (110)[001] сплава Fe-3%Si внутри деформационных полос наблюдаются вытянутые области, расположенные под углом ~ 20° к плоскости прокатки. Подобные области ранее интерпретировались как полосы сдвига. Ориентировка кристаллической решетки внутри данных полос близка к (110)[001], плоскость их габитуса залегает параллельно плоскостям {112} деформированной матрицы {111}(112). Разориентации между полосами и матрицей группируются около специальных разориентаций: $\Sigma 9$, $\Sigma 19a$, $\Sigma 27a$, $\Sigma 33a$, характеризующихся близкими углами поворота вокруг одной оси (110). При первичной рекристаллизации зерна (110)[001], растущие из полос, сохраняют с деформированной матрицей участки соответствующих специальных границ.

Введение

Решение задач по получению высокого уровня физических или механических свойств большой группы металлических материалов с ОЦК-решеткой связано с пониманием механизмов формирования в них мезоструктуры деформации и закономерностей ее эволюции в процессе последующих термических воздействий. К настоящему времени накоплен обширный экспериментальный материал, касающийся отмеченных явлений [1]. Наиболее интересным объектом мезоструктуры деформации являются полосы сдвига (ПС), которые, несмотря на большое количество экспериментальных данных и достаточно развитые теоретические представления о механизме их формирования, по-прежнему остаются предметом пристального внимания исследователей [2-8]. Сложность понимания механизма формирования ПС усугубляется наличием полос, имеющих различную кристаллогеометрию. Например, для прокатанных с большими степенями деформации монокристаллов Fe-3%Si с исходной ориентировкой (110)[001] плоскость габитуса ПС одних полос составляет с плоскостью прокатки угол $\sim 17^\circ$ (ПС тип II), а других — $\sim 37^\circ~(\Pi C$ тип I) [9].

Полосовые элементы мезоструктуры (переходные полосы, полосы сдвига, полосы Неймана (деформационные двойники)) давно известны как источники формирования зародышей рекристаллизованных зерен определенных ориентировок. В работах [10–12] установлено, что формирование зародышей первичной рекристаллизации на двойниках сопровождается формированием и последующей эволюцией в мезоструктуре кристалла специальных границ ($\Sigma 3 \rightarrow \Sigma 9$, $\Sigma 27$). Кроме того, показано [13], что зарождение зерен ориентировки (110)[001] при рекристаллизации между деформацион-

ными полосами (на переходных полосах) также связано с формированием еще в процессе деформации семейства специальных границ ($\Sigma 9$, $\Sigma 19a$, $\Sigma 27a$, $\Sigma 33a$). Факт зарождения зерен одной ориентации на разных элементах мезоструктуры позволяет предполагать существование единого механизма их образования и связывать его со специальными разориентациями (границами).

Настоящая работа посвящена исследованию процессов возникновения специальных разориентаций (границ) при формировании полос локализации деформации и их роли при образовании зародышей первичной рекристаллизации.

В качестве материала для исследований выбран сплав Fe-3%Si с ОЦК-решеткой. Возможность реализовать в сплаве практически все известные моды пластической деформации (скольжение, двойникование, разные типы полос локализации деформации) вкупе со стабильностью сплава в широком интервале температур делают его уникальным модельным материалом для исследования взаимосвязи процессов деформации, возврата и рекристаллизации.

Материал и методики исследований

Для проведения исследований использовались образцы сплава Fe-3%Si (готовая электротехническая анизотропная сталь с удаленным электроизоляционным покрытием). Образцы представляли собой пластины размерами $0.27 \times 30 \times 280$ mm, состоящие из крупных зерен (размер в плоскости прокатки 30-50 mm), характеризующихся достаточно совершенной текстурой (110)[001]. Образцы прокатывались с суммарной деформацией от 5 до 60% в направлении, близком к [001], после чего подвергались градиентному отжигу в интервале температур 400-800°С. На различных стадиях деформации и рекристаллизации проводились исследования микроструктуры и текстуры на электронном микроскопе JEOL JSM6490LV с приставкой Oxford Instruments (EBSD).

При анализе действующих систем скольжения в качестве лабораторной принята система координат, оси которой связаны с направлением холодной прокатки (RD), нормалью к ее плоскости (ND) и перпендикулярным им направлением (TD), так что все три направления образуют правую тройку векторов.

Формирование полос локализации деформации при холодной прокатке монокристалла (110)[001]

При достаточно больших степенях деформации ($\varepsilon > 50\%$) образцы имели развитую мезоструктуру, состоящую из деформационных полос, разделенных переходными полосами. Также в структуре наблюдались утоненные, иногда разделенные на отдельные фрагменты деформационные двойники, возникшие на начальной стадии процесса прокатки. При отмеченной степени деформации в металле в деформационных полосах фиксировалось образование областей, расположенных под углом $\sim 20^{\circ}$ к плоскости прокатки (рис. 1, *a*). В окрестности данных областей наблюдается высокая плотность дислокаций. Согласно классификации, приведенной в [9], эти области могут быть определены как ПС тип II (далее по тексту ПС-II).

Металлографический анализ большого числа деформированных монокристаллов показал, что ПС-II, как правило, наблюдаются вблизи границ деформационных полос, плоскость их габитуса залегает параллельно действующим плоскостям скольжения {112} деформированной матрицы. При этом ПС-II, имеющие одну и ту же плоскость габитуса, находятся в пределах одной деформационной полосы. Деформационные полосы, сформированные внутри деформированных монокристаллов с кристаллической решеткой, исходно близкой к (110)[001], имеют ориентировки, близкие к одной из двух симметричных октаэдрических ориентаций $\{111\}\langle 112\rangle$ (рис. 1, *a*). Ориентация кристаллической решетки внутри ПС-II, которые образуются в деформационных полосах с октаэдрической ориентировкой, находится в почти точной ориентации (110)[001] (рис. 1, *b*, *c*).

Интересным фактом является наличие между ПС-II и окружающей их матрицей точных специальных разориентаций. Специальные разориентации фиксируются в виде участков специальных границ, прерывающихся или переходящих одна в другую. Все обнаруженные специальные разориентации ($\Sigma 9$, $\Sigma 19a$, $\Sigma 27a$, $\Sigma 33a$) по сути составляют одно "семейство" взаимных ориентировок, которые образуются поворотом вокруг одной и той же оси [$\overline{110}$] на близкие углы (таблица).

Рис. 1. Микроструктура монокристалла сплава Fe-3%Si после холодной прокатки со степенью деформации $\varepsilon \approx 50\%$: a — ориентационная карта с пространственным изображением элементарных ячеек, b — ориентации внутри/около ПС с пространственным изображением элементарных ячеек, c ориентационная карта с выделением специальных границ, DT — деформационные двойники, SB — полосы сдвига.

Исследование изменения ориентации кристаллической решетки в матрице и внутри обнаруженных полос по пересекающим их направлениям показывает неизменность ориентации в пределах объектов, составляющих мезоструктуру, и скачкообразное изменение ориентации при пересечении границы (рис. 1, *b*).

Место формирования	Разориентация	Ось	θ	Переходы разориентаций	
		[uvw]		ТИП	Δ перехода, °
Матрица — полоса сдвига	$\Sigma 33a$	110	20.05	$\Sigma 33a \rightarrow \Sigma 19a$	-6.48
	$\Sigma 19a$	110	26.53	$\Sigma 19a ightarrow \Sigma 33a$ $\Sigma 19a ightarrow \Sigma 27a$ $\Sigma 19a ightarrow \Sigma 9$	$6.48 \\ -5.06 \\ -12.41$
	$\Sigma 27a$	110	31.59	$\Sigma 27a ightarrow \Sigma 19a$ $\Sigma 27a ightarrow \Sigma 9$	5.06 -7.35
	Σ9	110	38.94	$\begin{array}{c} \Sigma9 \to \Sigma19a \\ \Sigma9 \to \Sigma27a \\ \Sigma9 \to \Sigma11 \end{array}$	12.41 7.35 -11.54
	Σ11	110	50.48	$\Sigma 11 ightarrow \Sigma 9$	11.54

Характеристики специальных разориентаций между объектами деформационной мезоструктуры

Первичная рекристаллизация, связанная с полосами сдвига типа II

В результате градиентного отжига ранее деформированных образцов были зафиксированы различные стадии первичной рекристаллизации. Текстура полностью рекристаллизованного материала является преимущественно госсовской ((110)[001]) с некоторым рассеянием по всем углам. Исследование начальной стадии рекристаллизации показало, что зародыши первичной рекристаллизации с ориентировками, близкими к

Рис. 2. Микроструктура монокристалла сплава Fe-3%Si на начальной стадии первичной рекристаллизации ($\varepsilon \approx 50\%$): *a* — ориентационная карта с пространственным изображением элементарных ячеек, *b* — специальные границы.

(110)[001], возникают практически на всех составляющих структуры: двойниках деформации, переходных полосах, ПС-II (рис. 2, *a*).

Растущие при первичной рекристаллизации из ПС-II зерна, большая часть которых характеризуется наличием ребровой ориентировки (рис. 2, *a*), имеют с деформированной матрицей участки специальных границ $\Sigma 9$, $\Sigma 19a$, $\Sigma 27a$ и $\Sigma 33a$ (рис. 2, *b*). Данные специальные границы соответствуют разориентациям, зафиксированным между ПС-II и матрицей после деформации. Это позволяет предположить, что именно наличие специальных разориентаций (специальных границ) с деформированной матрицей позволяет локальным областям этих полос становится зародышами первичной рекристаллизации.

Интересно отметить, что достаточно часто внутренние области растущего первичнорекристаллизованного зерна отличаются по ориентации от его объемов, примыкающих к границе (рис. 2, a). Причем данная граница является преимущественно специальной (рис. 2, b). Таким образом, можно предположить, что в процессе роста зерна происходит подстройка кристаллической решетки его периферии под ориентацию матрицы.

Механизм формирования полос сдвига типа II

Формирование деформационных полос с решеткой, стремящейся к одной из двух симметричных ориентаций из {111}(112), предопределено ориентационной нестабильностью кристалла (110)[001] в случае его прокатки в направлении, параллельном кристаллографическому направлению [001]. Причиной образования набора деформационных полос является наличие локальных разориентаций между участками исходного монокристалла. В разных областях его решетки реализуется различный выбор первичных систем скольжения, действие которых определяет последующую переориентацию решетки. Следствием этого также является то, что полосы

Рис. 3. Взаимное проникновение деформационных полос с формированием полос сдвига типа II при деформации монокристалла сплава Fe-3%Si: DB₁ и DB₂ — деформационные полосы, SB — полосы сдвига типа II (ПС-II).

Рис. 4. Возможный вариант сохранения ориентации (110)[001] за счет противоположного действия систем скольжения $\{112\}\langle 111\rangle$ в соседних полосах деформации DB₁ — (111)[$\bar{1}12$], DB₂ — ($\bar{1}1\bar{1}$)[$\bar{1}12$], G — (110)[001].

деформации отличаются "скоростью" переориентации кристаллической решетки [13].

На начальной стадии формирования деформационных полос наблюдается процесс их взаимодействия, связанный с проникновением дислокаций из одних полос в другие [13]. Следы данного взаимодействия можно видеть в виде "языков" на границе раздела полос (рис. 3). Область (промежуточная полоса) между двумя полосами деформации с ориентировками, близкими к $\{111\}\langle 112\rangle$, "сохраняет" ориентацию (110)[001] в результате динамического равновесия противоположного действия систем скольжения в соседних полосах деформации (рис. 4). С увеличением степени деформации промежуточная полоса уменьшается в размерах до тонкой переходной полосы или границы.

Очевидно, что данный процесс развивается не только в видимой на шлифе плоскости, а происходит во всем деформируемом объеме материала. То есть "языки" образуются также в направлении, перпендикулярном направлению прокатки (TD). Результатом сечения данной трехмерной структуры плоскостью шлифа должны являться строго геометрически расположенные полосы, которые морфологически воспринимаются как объекты, подобные полосам сдвига (рис. 3). Таким образом, ПС-II являются не полосами сдвига в традиционном понимании, а сечениями плоскостью шлифа переходных полос на стадии их формирования.

Заключение

В монокристалле (110)[001] сплава Fe-3%Si при достаточно больших степенях деформации ($\varepsilon > 50\%$) наблюдается образование полос локализации деформации, расположенных под углом ~ 20°C к плоскости прокатки. Полосы характеризуются плоскостью габитуса практически параллельной плоскостям {112} матрицы, в которой они образуются, и наличием четко выраженной ребровой ориентации (110)[001], которая находится в специальной разориентации $\Sigma 9$ (и близкими к ней) с матрицей.

Зафиксировано, что зарождение новых зерен в процессе первичной рекристаллизации связано с наличием участков специальных разориентаций вдоль границ между объектами мезоструктуры (полосами деформации, деформационными двойниками, полосами сдвига типа II), сформировавшимися в процессе деформации.

Высказано предположение, что полосы сдвига типа II являются не полосами сдвига в традиционном понимании, а сечениями плоскостью шлифа переходных полос на стадии их формирования. Область между двумя полосами деформации с ориентировками, близкими к $\{111\}\langle 112\rangle$, "сохраняет" ориентацию (110)[001] в результате динамического равновесия противоположного действия систем скольжения в различных полосах деформации. В настоящее время интенсивно обсуждается роль специальных границ в формировании зародышей вторичной рекристаллизации [14,15], причем достоверных экспериментальных доказательств роли специальных границ в процессах аномального роста нет. Очевидно, что появлению специальных границ между кристаллитами сплава должно предшествовать образование специальных разориентаций. В настоящей работе экспериментально показана значимая роль специальных разориентаций в процессе формирования текстуры при деформации и первичной рекристаллизации в сплаве Fe-3%Si.

Работа выполнена на оборудовании лаборатории "Структурных методов анализа и свойств материалов и наноматериалов" ЦКП УрФУ.

Список литературы

- [1] *Humphreys F.J., Hatherly M.* ELSEVIER Ltd. Oxford, 2004. 574 p.
- [2] Anand L., Spitzig W.A. // Acta Met. 1982. Vol. 30. P.553-561.
- [3] Harren S.V., Deve H.E., Asaro R.J. // Acta Metall. 1988.
 Vol. 36, N 9. P. 2435–2480.
- [4] Canova G.R., Kocks U.F., Stout M.G. // Scripta Met. 1984.
 Vol. 18. P. 437-442.
- [5] Кащенко М.П., Чащина В.Г., Семеновых А.Г. // Физическая мезомеханика. 2003. Т. 6. № 1. С. 95–122.
- [6] Сарафанов Г.Ф., Перевезенцев В.Н. // ФТТ. 2009. Т. 51. Вып. 12. С. 2309-2314.
- [7] Русаков Г.М., Редикульцев А.А., Каган И.В., Лобанов М.Л. // ФММ. 2010. Т. 109. № 6. С. 701–707.
- [8] Свирина Ю.В., Перевезенцев В.Н. // ЖТФ. 2013. Т. 83. Вып. 8. С. 140–143.
- [9] Ushioda K., Hutchinson W.B. // ISIJ Int. 1989. Vol. 29. P. 862-867.
- [10] Русаков Г.М., Лобанов М.Л., Редикульцев А.А., Каган И.В. // ФММ. 2011. Т. 111. № 5. С. 554–560.
- [11] Лобанов М.Л., Русаков Г.М., Редикульцев А.А., Каган И.В. // ФММ. 2011. Т. 111. № 6. С. 613–618.
- [12] Rusakov G.M., Lobanov M.L., Redikultsev A.A., Kagan I.V. // Met. Mat. Trans. A. 2011. Vol. 42. N 6. P. 1435–1438.
- [13] Лобанов М.Л., Русаков Г.М., Редикульцев А.А., Лобанова Л.В. // ФММ. 2013. Т. 114. № 1. С. 33–38.
- [14] Homma H., Hutchinson B. // Acta Mat. 2003. Vol. 51. P. 3795–3805.
- [15] Park H.-K., Kang J.-H., Park C.-S., Han C.-H., Hwang N.-M. // Mat. Sci. Engineer. A. 2011. Vol. 528. N 7–8. P. 3228–3231.