01

Метод анализа физических процессов в ВТСП, происходящих на границе раздела вихревых и мейснеровских областей

© Х.Р. Ростами

Фрязинский филиал Института радиотехники и электроники им. В.А. Котельникова РАН, 141190 Фрязино, Московская область, Россия e-mail: rostami@ms.ire.rssi.ru

(Поступило в Редакцию 12 февраля 2013 г. В окончательной редакции 4 июня 2013 г.)

Разработана методика для зондирования объема образца при помощи фронта переменного затухающего магнитного поля, позволяющего выделить и исследовать физические процессы в сверхпроводниках, происходящих на вихревом фронте. Монотонно увеличивая на равные величины амплитуду поля, создается возможность исследования особенности образования и преобразования магнитной микроструктуры в зависимости от изменения кристаллографической микроструктуры образца. Для образцов с различной микроструктурой получены качественно новые результаты. Методику можно применить для тестирования эпитаксиальных пленок ВТСП и исследования магнитных материалов.

Введение

Проблема выяснения механизма взаимодействия кристаллической и магнитной микроструктур высокотемпературных сверхпроводников (ВТСП) является одной из центральных задач физики ВТСП, и ею занимаются во многих странах мира. Несмотря на большое количество работ по проникновению (выходу), распределению и захвату магнитного потока в пленочных, монокристаллических и поликристаллических ВТСП-образцах, до сих пор не проводился систематический сравнительный анализ экспериментальных данных по захвату магнитного потока, полученных по единой схеме для образцов с различной микроструктурой [1,2]. Между тем проведение такого рода анализа позволит получить полезную информацию о магнитном микросостоянии (локальных критических параметров монодоменов, кристаллитов и субкристаллитов, а также междоменных, межкристаллитных и межсубкристаллитных слабых связей, энергии междоменных, межкристаллитных и межсубкристаллитных джозефсоновских переходов, энергии конденсации в монодоменах, кристаллитах и субкристаллитах, сил пиннингов в них и т.д.) и кристаллографическом микросостоянии (линейных размерах монодоменов, кристаллитов и субкристаллитов, степени изменения анизотропии, плотности границ двойникования, усиления ближнего порядка с уменьшением размеров монодоменов, кристаллитов и субкристаллитов, а также морфологии разномасштабных дефектов, локализованных дислокаций, пластических деформаций и других возможных дефектов микроструктуры и т.д.) сверхпроводников. Ответы на эти и другие вопросы позволят более подробно установить взаимосвязь кристаллографической и магнитной микроструктур ВТСП и помогут развитию многих перспективных технологий, основанных на использовании ВТСП. Традиционные методики исследования магнитных свойств (см., например, [3-9] и цитированную в

них литературу) позволяют наблюдать интегральные характеристики сверхпроводников, так как внешнее поле после его выключения или уменьшения плавно выходит из образца и частично захватывается образцом. Это обстоятельство не позволяет одновременно получить информацию о магнитной и кристаллографической микроструктурах образца. Как известно, одновременно изучать магнитную и кристаллографическую микроструктуру образцов возможно с помощью дифракции нейтронов. Однако, несмотря на то, что распределение полей регистрируется локально, эта методика также является интегральной, так как магнитная структура образца исследуется в магнитном поле или после его плавного снятия [10]. Исходя из вышеизложенного разработка методики локальной диагностики ВТСП, позволяющей произвести захват магнитного потока как в однородном, так и в локальном магнитных полях с возможностью плавного изменения пространственного масштаба приложенного поля, представляется актуальной. Такая методика позволит от больших пространственных масштабов приблизиться к малым пространственным масштабам и селективно исследовать распределение локальных полей вокруг образца, монодоменов, кристаллитов и субкристаллитов. Также можно получить полезную информацию не только о механизме проникновения (выхода) магнитного потока, образования и преобразования вихревой решетки, но и кристаллографической микроструктуре образцов и выявить некоторые особенности взаимодействия магнитной и кристаллической микроструктур образца.

Целью работы является разработка селективной методики локальной диагностики сверхпроводников, позволяющей по отдельности исследовать магнитное состояние областей с одинаковыми критическими параметрами.

1. Образцы и методика эксперимента

1.1. Методика эксперимента

Для регистрации захвата магнитного потока только от фронта магнитного поля параллельно соленоиду (индуктивностью $L \approx 7.6 \, \text{H}$ с активным сопротивлением обмотки $R \approx 85.9 \,\Omega$), создающему внешнее поле, включалась емкость $C = 0.05 \,\mu$ F. После подачи на образованный LC-контур импульса постоянного напряжения в соленоиде возникало переменное затухающее магнитное поле $H(t) = H_0 - exp(-\beta t) \cos \Omega t$. В этом выражении $\beta = R/(2L)$ — коэффициент затухания, $\Omega = (\omega^2 - \beta^2)^{1/2} \approx 1.6 \, \mathrm{kHz}$ — собственная частота колебательного контура, $\omega^2 = 1/(LC)$. На рис. 1, *a* приведена временная зависимость поля H(t) для произвольных параметров LC-контура. Так как амплитуда колебания $H_0 \exp(-\beta t)$ от значения H_0 до $-H_0$ экспоненциально затухает до нуля, захват потока от переменного поля не происходит и фиксируется только от поля H_0 . С помощью изменения емкости С мы убедились, что

Рис. 1. Временная зависимость поля H(t) для произвольных параметров *LC*-контура (*a*), схема распределения B_{tr} по радиусу образца *r* после воздействия на образец максимального поля H(t) (*b*).

LC-контур устойчиво работает в частотном диапазоне до 2 kHz. Увеличение емкости C до 100 μ F привело к исчезновению колебаний и к переходу системы в режим работы, аналогичный традиционным методикам, когда параллельно соленоиду вместо емкости включался резистор. Исследование магнитополевой зависимости плотности захваченного магнитного потока $B_{\rm tr}(H_0)$ с помощью предложенной методики проводилось в режиме ZFCMFA (zero field cooling with magnetic flux accumulation) [11-13]. Согласно режиму ZFCMFA, образец охлаждался до температуры жидкого азота в нулевом магнитном поле. Затем подавалась ступенька внешнего магнитного поля, и через 5 min (время, достаточное для завершения быстро релаксирующей части B_{tr} и образования в образце "жестко" укрепленной вихревой решетки) после снятия поля измерялась B_{tr} в центре на поверхности образца. Далее без нагревания образца подавалось поле Но следующей ступени и измерялась суммарная B_{tr}, и т.д. Величина ступеней монотонно увеличивалась шаг за шагом на равные величины, после достижения необходимой величины амплитуда поля такими же шагами уменьшалась. С целью плавного перехода от больших пространственных масштабов к малым после каждого цикла измерения высота ступенек поля Н₀ постепенно уменьшалась до минимальной, при этом после каждого цикла измерения образец нагревался до температуры выше Т_с и заново охлаждался до температуры T = 77.4 К. Такой подход позволял поэтапно передвигать фронт магнитного поля вглубь образца, монодоменов, кристаллитов и субкристаллитов, а затем обратно и следить за движением границы раздела между областями, занятыми вихрями и мейснеровскими областями, свободными от вихрей. Так как по условию эксперимента влияние заднего фронта магнитного импульса исключалось, зондирование объема образца с помощью фронта переменного затухающего магнитного поля позволяло раздельно исследовать магнитное состояние областей с одинаковыми критическими параметрами, произвести <локальный> захват потока и изменить топологию захваченного магнитного потока с помощью фронта поля. С ростом внешнего поля граница раздела вихревых и мейснеровских областей постепенно сжимается вокруг зон с наиболее высокими критическими параметрами (*H*_{c1i}, *J*_{ci}, *T*_{ci}). Таким образом, с помощью циклирования поля можно добиться взаимных переходов между гауссовским и дельтаобразным распределениями захваченного магнитного потока. Это даст возможность получить полезную информацию о магнитных свойствах образцов в зависимости от кристаллографической микроструктуры таких пространственно неоднородных сверхпроводников, каковыми являются ВТСП.

Измерения зависимости $B_{\rm tr}(H_0)$ проводились при температуре жидкого азота датчиком Холла с размером рабочей области $50 \times 50 \,\mu{\rm m}$ и чувствительностью $\approx 200 \,\mu V m T^{-1}$. Установка позволяла регистрировать сигнал датчика Холла с чувствительностью $2.5 \cdot 10^{-3} \,{\rm G}$ и перемещать датчик Холла от центра к периферии

образца. Магнитное поле было направлено перпендикулярно плоскости образцов.

На рис. 1, *b* схематически показано распределение по радиусу *r* отклика образца $B_{\rm tr}$ на воздействие поля H(t), позволяющее определить величину остаточного поля $\Delta B_{\rm tr}$, вызванного неполной компенсацией сигнала от положительных и отрицательных полупериодов поля H(t). Рассмотрен случай, когда поле H(t)приводит к реализации модели Бина [14] в кристаллитах размером $2r_g$ и к подавлению слабых связей в межкристаллитном пространстве шириной δ [11–13]. При полях ниже первого критического магнитного поля кристаллитов H_{c1g} величина сдвига фронта $B_{\rm tr}$ от центра диска — r_x сравнима с радиусом диска r_g . Степень подавления $\Delta B_{\rm tr}$ определялась из выражений

$$k = \frac{B_{\rm tr}(t=0)}{\Delta B_{\rm tr}} = \frac{B_{\rm tr}(t=0)}{\sum\limits_{n=1}^{N} [B_{\rm tr}(t_{2n-1}) - B_{\rm tr}(t_{2n})]}.$$
 (1)

Как показал анализ, из-за многократной компенсации сигнала отклика от положительных и отрицательных полупериодов поля H(t) усредненный остаточный сигнал $\Delta B_{\rm tr}$ является величиной второго порядка по сравнению с сигналом отклика образца B_{tr} на первый четверть период поля H(t). Для оценки величины $\Delta B_{\rm tr}$ при значении t, соответствующем шести экстремумам первых трех периодов поля H(t), определим $B_{tr}(t)$ из $H_0 \exp(-\beta t)$. Далее вычислим $B_{tr}(t_{2n}) = B_{tr2} + B_{tr4} + B_{tr6}$ и $B_{tr}(t_{2n-1}) = B_{tr1} + B_{tr3} + B_{tr5}$ для положительных и отрицательных полупериодов соответственно. Как показал расчет, $k \approx 23.1$ для всех заданных значений H_0 и не изменялся в частотном диапазоне 0.1-2 kHz. Кроме этого, как видно из рис. 1, b, величина k значительно увеличивается из-за сравнительно близкого положения рабочей области датчика Холла к центру действия магнитного импульса. Остаточный сигнал $\Delta B_{\rm tr}$, возникающий после фронта магнитного поля, можно существенно уменьшить путем повышения разрешения методики, что достигается уменьшением декремента затухания $D = \ln(H_n/H_{n+1})$ LC-контура и уменьшением размера датчика Холла (известны датчики Холла с размером рабочей области $10 \times 10 \,\mu m$). Для осуществления захвата магнитного потока в однородном магнитном поле и измерения магнитополевых зависимостей эффективного размагничивающего фактора $n_{\rm eff}(H_0)$ и термодинамического магнитного поля $H_i(H_0)$, а также сравнения полученных результатов с результатами, полученными с помощью фронта переменного затухающего магнитного поля, исследование также проводились в режиме ZFC (zero field cooling). Этот режим отличался от обычного режима ZFCMFA тем, что каждый раз после захвата магнитного потока образец нагревался до температуры выше Т_с и заново охлаждался до температуры 77.4 К. Компонента магнитного поля Земли Н_г компенсировалась катушкой, коаксиальной соленоиду, задающему внешнее магнитное поле Н₀. Методика и установка подробно описаны в [11-13,15].

1.2. Образцы

Для сравнительного анализа исследования проводились на YBa₂Cu₃O_{7-x} (YBCO)-образцах с разными микроструктурами и с разной высотой краевого барьера, объемным пиннингом, размагничиванием. Образцы в форме диска диаметром 8 mm, изготовленные из эпитаксиальных пленок ҮВСО (образец № 1) массивного текстурированного (ось с перпендикулярна плоскости образца) квазимонокристаллического ҮВСО (№ 2) и нетекстурированного поликристаллического YBCO (№ 3), имели толщину $\approx 0.4 \,\mu\text{m}$, $\approx 0.7 \,\text{mm}$ и ≈ 4.3 mm соответственно. Эпитаксиальные пленки YBCO получены лазерным распылением на подложке NdGaO₃ (110) стехиометрической YBCO-мишени высокой плотности [16,17]. Исследование на рентгеновском дифрактометре показало, что пленки имеют ориентацию оси с перпендикулярно плоскости подложки и низкую дефектность. Исследования с помощью растрового электронного микроскопа высокого разрешения и токовых измерений показали, что пленки обладают меньшим числом двойниковых границ и имеют анизотропию в плоскости ab, сравнимую с анизотропией монокристалла [18]. Критический ток, измеряемый по четырехзондовой схеме на мостиках, изготовленных методом фотолитографии и жидкого травления, при 77.4 К составил $\sim 5 \cdot 10^6 \,\text{A/cm}^2$ в поле Земли. Текстурированные квазимонокристаллические и нетекстурированные ҮВСО-поликристаллические образцы вырезались алмазной фрезой из заготовки цилиндрической формы. Плавленные текстурированные квазимонокристаллические образцы синтезировались с помощью затравки, устанавливаемой сверху при высокой температуре. Под оптическим микроскопом в поляризованном свете отчетливо наблюдались блестящие монокристаллические блоки (монодомены) размером $\sim 0.11 \, {\rm cm}^2$, разделенные узкими включениями зеленого оттенка. Это подтверждалось картографированием захваченного магнитного потока с помощью датчика Холла. Нетекстурированные образцы, синтезированные по стандартной твердофазной технологии, имели относительную плотность около 95% (за теоретическую плотность бралась величина $6.38 \,\mathrm{g}\,\mathrm{cm}^{-3}$) и состояли из анизотропных хаотически ориентированных кристаллитов разных форм и взаиморасположением со средним размером $\sim 1\,\mu$ m. С целью исключения неоднородности распределения кислорода на торцах по отношению к объему торцевые поверхности удалялись алмазным резцом. Критический ток, измеряемый по четырехзондовой схеме на мостиках, изготовленных из квазимонокристаллических и нетекстурированных поликристаллических ҮВСО-образцов при $T = 77.4 \,\mathrm{K}$ в поле Земли, составлял $\sim 5.7 \cdot 10^3 \,\mathrm{A/cm^2}$ и $\sim 10^2 \,\text{A/cm}^2$ соответственно. На поверхности монодоменов квазимонокристаллического ҮВСО наблюдались двойниковые границы. Критический ток, измеряемый по четырехзондовой схеме на мостике, изготовленном из монодомена, составил $\sim 6 \cdot 10^5 \,\text{A/cm}^2$ при 77.4 К в поле Земли. Анизотропия сопротивления, измеренная на поверхности монодомена, составила ~ 3, что говорит о малом числе двойниковых границ в монодомене. Температура начала и ширина сверхпроводящего перехода $(T_c \ u \ \Delta T_c)$ образца, находящегося внутри микросоленоида $(l \approx 330 \text{ mH})$, измерялись резонансным измерителем индуктивности l в частотном диапазоне 110–155 kHz. Из температурной зависимости индуктивности l(T) для эпитаксиальной пленки было получено $T_c \approx 92 \text{ K}$ и $\Delta T_c \approx 0.6 \text{ K}$. Для образцов № 2 и № 3 было получено $T_c \approx 92 \text{ K}$ и $\Delta T_c \approx 1 \text{ K}$ и 4 K соответственно.

2. Экспериментальные результаты

На рис. 2 приведены магнитополевые зависимости плотности захваченного магнитного потока $B_{tr}(H_0)$ образцов № 1 и № 2, измеренные с помощью предложенной методики, и для образца № 1, измеренная в обычном режиме ZFCMFA, когда параллельно соленоиду включался резистор. Как видно из рис. 2, а, b (кривые 1), с ростом поля зависимости $B_{tr}(H_0)$ имеют максимум. При обратном ступенчатом уменьшении поля от его максимального значения, кривые 2 до определенной точки необратимости Q повторяют первоначальные кривые 1 и только после точки необратимости расходятся. Именно кривые 2 монотонно растут, достигая насыщения. Дальнейшее многократное повторение циклов увеличения и уменьшения внешнего поля не приводит к изменению характера кривых 2. Как видно из рис. 2, с, при захвате в однородном поле кривая 1 с ростом поля плавно растет, достигая области насыщения. При уменьшении внешнего поля (кривая 2) образец запоминает максимальное значение B_{tr} , достигнутое на кривой 1.

На рис. 3 приведена магнитополевая зависимость $B_{tr}(H_0)$ для образца № 3, а также для образца № 1, измеренная для точки, смещенной на 2 mm от геометрической оси пленки. На рис. 3, с в увеличенном масштабе приведена хвостовая часть рис. 3, b. Из сравнения кривых на рис. 2, а, b и 3, а видно, что с ухудшением качества образцов точка необратимости все ближе подходит к точке максимума, а кривая 2 выше точки необратимости все сильнее размазывается при циклировании внешнего поля. Как видно из рис. 3, b, c, как при росте, так и при уменьшении поля на кривых 1 и 2 отчетливо видны регулярные ступеньки через определенные интервалы внешнего поля. Отдельно представленные на рис. 2, а и 3, b начальные части зависимости $B_{tr}(H_0)$ в первую очередь демонстрируют хорошую повторяемость кривой 2 для образца № 1 по сравнению с образцами № 2 и № 3. Другой целью является сопоставление полученных результатов для точки, находящейся на геометрической оси пленки, и точки, смещенной от оси на 2 mm. Как видно из рис. 2, a и 3, b, для области низких полей результаты количественно различаются. Эти различия могут быть связаны как с более сильным проявлением полей размагничивания,

вызванным внешней поверхностью образца, так и микроструктурой пленки и не являются экспериментальной ошибкой, так как в противном случае на зависимостях $B_{tr}(H_0)$ обнаруживались бы ступени независимо от микроструктуры образцов. Следует отметить, что в области сильных полей зависимости $B_{tr}(H_0)$ для обеих точек аналогичны. Для выяснения количественного различия значения точек Q и кривых 1 и 2 (рис. 2, а и 3, b) были измерены зависимости $B_{tr}(H_0)$ и $B_{tr}(r)$ с помощью датчиков Холла с разными размерами рабочей поверхности (50 \times 50 μ m, 150 \times 450 μ m и 0.5 \times 1.5 mm). Было обнаружено количественное отличие в показаниях датчиков, при этом с увеличением размера датчика Холла разница в их показаниях возрастала. Между тем измеренные обычным способом зависимости $B_{tr}(r)$ и $B_{\rm tr}(H_0)$ не зависели от размера рабочей поверхности датчика Холла, что исключало влияние на результаты измерения внешних и внутренних полей размагничивания. Таким образом, полученные результаты отчетливо демонстрируют, что обнаруженные количественные различия значения точек Q и кривых 1 и 2 (рис. 2, a и 3, b) связаны с увеличением пространственного разброса локальных характеристик образца из-за отсутствия дольнего порядка в пленке. Итак, поле H(t) усиливает проявление незначительных пространственных разбросов локальных характеристик образца. Размазывание кривых 2 (рис. 2, b и 3, a) при циклировании внешнего поля и не проявление на рис. 2, b и 3, a ступеней вызвано увеличением разупорядоченности кристаллитов и разброса параметров межкристаллитных слабых связей из-за ухудшения качества образцов [19]. Нами также были проведены исследования на поликристаллических пленках с разветвленной сетью слабых связей. В отличие от массивных поликристаллических образцов на полученных зависимостях $B_{tr}(H_0)$ отчетливо были видны ступени, однако фронты ступенек были шире и размазаны по сравнению с аналогичными ступеньками эпитаксиальных пленок. Полученные результаты качественно не изменились при радиальном перемещении образца по отношению к датчику Холла. Оценка показала, что для эпитаксиальной пленки $B_{
m tr}^{
m max} = J_c d \approx 200\,{
m G}$ (здесь J_c — плотность критического тока, B_{tr}^{max} — максимальная плотность захваченного магнитного потока, *d* — толщина пленки), что сильно расходится с экспериментальным результатом $B_{\rm tr}^{\rm max} \approx 5.5 \,{\rm G}$, приведенным на рис. 2, с. Такой результат показывает, что вопреки транспортным измерениям и показаниям рентгеновского дифрактометра и электронного растрового микроскопа в сильных магнитных полях границы двойникования в эпитаксиальной пленке ведут себя аналогично слабым связям в поликристаллических пленках. Учитывая более яркое проявление ступенек с ростом поля и увеличение интервала между ступенями, можно также предположить, что при отсутствии магнитного поля или в слабом магнитном поле более короткие границы двойникования, расположенные существенно ближе друг к другу, замаскированы. Именно это является причиной

Рис. 2. Магнитополевые зависимости плотности захваченного магнитного потока $B_{tr}(H_0)$ для образца № 1 диаметром 8 mm и толщиной $\approx 0.4 \,\mu$ m (*a*), для образца № 2 диаметром 8 mm и толщиной $\approx 0.7 \,$ mm (*b*), измеренные с помощью предложенной методики, *c* — для образца № 1, измеренного в обычном режиме ZFCMFA, когда параллельно соленоиду включался резистор. Температура 77.4 К.

их необнаружения с помощью микроскопов. Исходя из вышеизложенного можно предположить, что хотя и повышение качества образцов приводит к уменьшению числа границ двойникования, тем не менее их достаточно много и они существенно влияют на физические процессы, происходящие в ВТСП. Таким образом, как видно из полученных результатов, по сравнению с традиционными методами предложенная методика демонстрирует повышенную разрешающую способность и высокую чувствительность к незначительным пространственным разбросам локальных характеристик образца. Сравнение рис. 2 и 3 показывает, что предложенная методика

Рис. 3. Магнитополевая зависимость плотности захваченного магнитного потока $B_{tr}(H_0)$: *a* — для образца № 3 диаметром 8 mm и толщиной ≈ 4.3 mm, измеренная в центре образца, *b* — № 1 для точки, смещенной на 2 mm от геометрической оси пленки. На рис. 3, *c* в увеличенном масштабе приведена хвостовая часть рис. 3, *b*. Температура 77.4 К.

позволяет наблюдать качественно новые результаты для образцов с разной микроструктурой:

а) в отличие от традиционных методик при росте поля зависимость $B_{tr}(H_0)$ не выходит на насыщение, а проходит через максимум,

b) при уменьшении поля зависимость $B_{tr}(H_0)$ не запоминает достигнутое при росте поля максимальное значение, а демонстрирует сильный гистерезис,

с) при циклировании по полю зависимость $B_{tr}(H_0)$ демонстрирует полную обратимость,

d) кривые $B_{tr}(H_0)$ имеют "ступенчатый" характер.

Измеряя магнитополевую зависимость эффективного размагничивающего фактора образца $n_{\rm eff}(H_0)$, по значениям H_0 , при которых на зависимости $B_{\rm tr}(H_0)$ (рис. 3, b) возникают особенности, можно определить значения термодинамического магнитного поля H_i и термодинамических первых критических магнитных полей образца, кристаллитов и субкристаллитов $H_{ci} = H_i = H_0/(1 - n_{\rm eff})$ (способ измерения указанных величин подробно описан в [11–13]). Мейснеровские поверхностные экранирующие токи образца, кристаллитов и субкристаллитов для $\lambda = 0.2 \,\mu$ m можно определить по формуле $J_{ci} = (10H_{ci}/4\pi\lambda)$ (где λ — лон-

$H_0,$ 10 ³ A/m	H_i , $10^3 \mathrm{A/m}$	J_c , 10 ⁹ A/m ²	$a_g, 10^{-6} \mathrm{m}$	$R_g,$ 10 ⁻¹³ J	$E_j, 10^{-16} \mathrm{J}$	f_p , 10^{-4} H/m	F_p , 10 H/m ³
0.79	0.31	1.24	0.84	5.4	0.1	0.259	0.088
1.59	2.33	9.32	0.59	5.58	2.91	0.526	0.281
2.38	4.74	18.96	0.84	5.71	2.92	0.789	0.76
3.17	7.09	28.36	0.42	5.81	2.9	1.05	1.32
3.97	9.48	37.92	0.37	5.88	2.96	1.33	2.31
4.76	11.98	47.92	0.34	5.96	2.9	1.61	3.49
5.55	14.47	57.88	0.31	6	2.91	1.89	4.8
6.35	19.6	78.4	0.29	6.08	2.86	2.17	5.71
7.14	22.25	89	0.27	6.12	2.97	2.46	8.33
7.94	24.83	99.32	0.24	6.17	2.74	2.75	12.3
9.52	27.39	109.56	0.21	6.24	2.78	3.04	17.64
11.11	32.51	130.04	0.19	6.31	2.94	3.6	24.36
12.7	37.62	150.48	0.18	6.36	3.04	4.18	31.31
14.29	42.91	171.64	0.173	6.4	3.03	4.76	39.1
15.87	47.4	189.6	0.166	6.47	2.91	5.26	45.72
17.44	54.74	218.96	0.157	6.51	2.92	6.09	54.39
19.05	59.53	238.12	0.149	6.56	2.92	6.62	60.8
20.63	66.8	267.2	0.139	6.6	2.91	7.43	70
23.81	74.09	296.36	0.131	6.66	2.92	8.24	79.6
26.98	85.16	340.64	0.124	671	2.92	9.46	53.69
31.75	96.17	384.68	0.118	6.76	2.91	10.68	168.36
34.92	107.32	429.28	0.114	6.8	2.92	11.92	124.7
39.68	118.49	473.96	0.108	6.88	2.92	13.17	138.33
47.62	140.96	563.84	0.104	6.92	2.92	15.67	166.54
51.59	152.71	610.84	0.1	6.96	2.91	16.97	180.4

доновская глубина проникновения магнитного поля в образец). Подставляя значения J_{ci} и B_{tri} в формулы [2] $F_{pi} = J_{ci}B_{tri}$ и $f_{pi} = \Phi_0 J_{ci}$ (где Φ_0 — квант магнитного потока) для характерных магнитных полей Н₀, можно определить объемную плотность силы пиннинга и силу пиннинга, действующую на единицу длины вихря соответственно. Энергии междоменных, межкристаллитных и межсубкристаллитных джозефсоновских переходов Е₁ и внутридоменную, внутрикристаллитную и внутрисубкристаллитную энергии конденсации E_g , для полей H_{ic} и токов J_{ci} можно определить из выражения [20,21]: $E_J = J_c a_g^2/2e$ и $E_g = V_g H_{cg}^2/8\pi$ ($V_g = a_g^3$ — объем доменов или кристаллитов и субкристаллитов, е — заряд электрона). Из выражения [20,21] $a_g = (\Phi_0/H_c)^{1/2}$ можно определить линейный размер кристаллитов и субкристаллитов.

В таблице приведены значения вышеперечисленных величин.

3. Обсуждение результатов

Плотное расположение междоменных слабых связей широкого спектра джозефсоновской энергии приводит к макроскопическому проникновению магнитного потока в него. Магнитный поток сначала в виде гипервихрей [22] проникает в междоменные слабые связи и после снятия поля захватывается в них. Затем с ростом поля поток в виде линейных цепочек джозефсоновских и абрикосовских вихрей проникает в монодомены и захватывается в них после снятия поля. Таким образом, зависимость $B_{tr}(H_0)$ монотонно растет, достигая максимума. Дальнейший рост внешнего поля приводит постепенно к проникновению вихрей в кристаллиты и субкристаллиты и к частичному подавлению токов междоменных слабых связей, межкристаллитных и межсубкристаллитных границ двойникования полями рассеяния джозефсоновских и абрикосовских вихрей, захваченных в монодоменах, кристаллитах и субкристаллитах. Это приводит к уменьшению среднего значения B_{tr} . По мере роста поля происходит увеличение плотности потока, направленного противоположно внешнему полю, и продолжается спад кривой 1 (рис. 2, a, b и 3, a, b). Уменьшение внешнего поля от заданного максимального значения приводит обратно к постепенной перестройке по полю вихрей, захваченных на границах двойникования монодомена, кристаллитов и субкристаллитов и заново к захвату джозефсоновских и абрикосовских вихрей на межсубкристаллитных и межкристаллитных плоскостях двойникования. Это приводит к образованию в образце фазозависимых одинаково направленных вихревых массивов. Дальнейшее уменьшение поля приводит к постепенному объединению вихревых массивов, и зависимость $B_{tr}(H_0)$ растет, достигая области насыщения, когда вихревой массив занимает весь объем образца и поля рассеяния всех вихрей замыкаются вокруг образца. Последующее циклирование внешнего поля не приводит к изменению характера кривой 2 (рис. 2, a, b и 3, a) из-за повторения циклов постепенного подавления слабых связей полями рассеяния джозефсоновских и абрикосовских вихрей, захваченных в субкристаллитах, кристаллитах и монодоменах и дальнейшего переворачивания и захвата джозефсоновских и абрикосовских вихрей в слабых связях. Таким образом, при росте поля захваченный поток поэтапно переключается на центры с более сильным пиннингом, подавляя захваченный поток в центрах со слабым пиннингом. Об этом свидетельствовало постепенное уменьшение магнитной релаксации вплоть до полного ее исчезновения с ростом поля. Релаксация измерялась по изменениям B_{tr} в течение 5 min сразу после отключения тока соленоида. При уменьшении поля захваченный поток сохраняется на центрах с сильным пиннингом, и постепенно в захвате участвуют центры со слабым пиннингом. Таким образом, с ростом внешнего поля граница раздела вихревых и мейснеровских областей постепенно сжимается вокруг зон с наиболее высокими критическими параметрами $(H_{c1i}, J_{ci}, T_{ci})$, а при уменьшении поля заполняется пространство между этими зонами. Вышеприведенное объяснение отчетливо демонстрирует, что циклирование поля приводит к взаимным переходам между гауссовским и дельта-образным распределениями захваченного магнитного потока. В традиционных методиках как при росте, так и при уменьшении поля в захвате потока участвуют одновременно все центры пиннинга. Сходство полученных результатов для образцов № 1, № 2 и № 3 указывает на единый механизм проникновения (выхода), распределения и захвата магнитного потока в них. Рост поля только приводит к укорачиванию более длинных слабых связей и границ двойникования и к трансформации пространственных масштабов джозефсоновских вихрей. С уменьшением размеров вихрей они начинают замечать близко расположенные короткие границы двойникования и мелкомасштабные структурные неоднородности образца. Точка необратимости Q определяет границу исчезновения протяженных слабых связей (гипервихрей). Об этом свидетельствует сближение точки необратимости к точке максимума с ухудшением качества образцов, межкристаллитные связи которых подавляются в более слабых полях. Одновременное проникновение вихрей в монодомены большое число более упорядоченных кристаллитов и субкристаллитов с близким размагничивающим фактором приводит к скачкам на зависимости $B_{tr}(H_0)$ (рис. 3, b, c). Так как с ростом внешнего поля в процессе участвует все большее количество более мелких кристаллитов и субкристаллитов, то скачки на зависимостях становятся более ярко выраженными, а уменьшение размагничивающего фактора кристаллитов и субкристаллитов усложняет процесс проникновения в них поля и тем самым увеличивает интервал между ступенями.

Заключение

Итак, поликристаллические ВТСП рассматриваются как многоступенчатые системы, состоящие из монодоменов, кристаллитов и субкристаллитов. С ростом поля поэтапно происходит проникновение вихрей в междоменное пространство и в границы двойникования монодоменов и кристаллитов, и вихри сосредоточиваются вокруг все более мелких более упорядоченных близких по размерам субкристаллитов. Из полученных результатов вытекает, что в сильных магнитных полях (с учетом размагничивающего фактора пленки) исследованные эпитаксиальные пленки, так же как и массивные и пленочные поликристаллические ВТСП, "распадаются" на монодомены, кристаллиты и субкристаллиты с различными размагничивающими факторами. При одновременном проникновении вихрей в близкие по размерам кристаллиты и более упорядоченно расположенные субкристаллиты на зависимости $B_{tr}(H_0)$ возникают ступени. С улучшением качества образцов эти ступени проявляются более ярко, что связано с возрастанием ближнего порядка. Отсутствие ступенек на зависимости $B_{\rm tr}(H_0)$ массивных поликристаллических образцов более наглядно демонстрирует отсутствие дальнего порядка в них. Именно с проявлением стеклообразности кристаллографической микроструктуры ВТСП объясняются обнаруженные преобразования в вихревой системе. Сходство результатов, полученных на образцах с различными микроструктурами, указывает на единый механизм проникновения (выхода), распределения и захвата магнитного потока в них. Именно с проявлением стеклообразности микроструктуры ВТСП связаны обнаруженные преобразования в вихревой системе. Подтверждены ранее полученные результаты [11-13], что для уменьшения составляющей свободной энергии Гиббса, вызванной полями размагничивания, образцу выгодно распадаться на монодомены, кристаллиты и субкристаллиты. Измерены локальные критические токи и термодинамические первые критические магнитные поля монодоменов, кристаллитов и субкристаллитов, а также междоменных, межкристаллитных, межсубкристаллитных и внутрисубкристаллитных слабых связей, энергии междоменных, межкристаллитных и межсубкристаллитных джозефсоновских переходов Е_J, энергии конденсации Eg в монодоменах, кристаллитах и субкристаллитах и сил пиннингов в них, линейные размеры монодоменов, кристаллитов и субкристаллитов. Обнаружено, что с ростом поля происходит резкий рост Е_J при переходе из междоменного пространства вовнутрь монодомена, при этом Е_J изменяется незначительно во внутридоменном пространстве, а Е_g растет с уменьшением размеров двойников. Показано, что Eg превышает EJ более чем на три порядка во всем диапазоне изменения внешнего поля

Комбинируя способы однородное поле-локальная регистрация, локальное поле-локальная регистрация, методику можно применять для исследования магнитного состояния (магнитной микроструктуры, магнитного момента, магнитной индукции, внутренних и внешних полей размагничивания, магнитной релаксации и других магнитных характеристик) ферромагнетиков, антиферромагнетиков, магнитных жидкостей, химических и других физических объектов.

Автор выражает глубокую благодарность В.Н. Губанкову за проявленный интерес и за ценные замечания.

Список литературы

- [1] Губанков В.Н., Ростами Х.Р. // ФТТ. 2001. Т. 43. С. 1168.
- [2] Ростами Х.Р. // ФНТ. 2001. Т. 27. С. 103.
- [3] Fisher L.M., Kalinov A.V., Voloshin L.F. et al. // Phys. Rev. B. 2005. Vol. 71. P. 140 503.
- [4] Daghero D., Mazzett P., Stepanescu A. et al. // Phys. Rev. B. 2002. Vol. 66. P. 184 514.
- [5] Zola D., Polichetti M., Senatore C. et al. // Phys. Rev. B. 2004.
 Vol. 70. P. 224 504.
- [6] Jooss Ch., Albrecht J., Kuhn H. et al. // Rep. Prog. Phys. 2002.
 Vol. 65. P. 651.
- [7] Винников Л.Я., Бойнагров Д.Э., Зверев В.Н. и др. // ЖЭТФ.
 2009. Т. 136. Вып. 2. С. 331.
- [8] Балаев Д.А., Быков А.А., Семенов С.В. и др. // ФТТ. 2011. Т. 53. С. 865.
- [9] Картамышев А.А., Красноперов Е.П., Куроедов Ю.Д. и др. // Письма в ЖТФ. 2009. Т. 35. Вып. 17. С. 26.
- [10] Забенкин В.Н., Аксельрод Л.А., Воробьев А.А. и др. // Письма в ЖЭТФ. 1999. Т. 70. С. 771.
- [11] Ростами Х.Р. // ЖЭТФ. 2005. Т. 128. С. 760.
- [12] Ростами Х.Р. // ЖЭТФ. 2008. Т. 134. С. 716.
- [13] Rostami Kh.R. // Mod. Phys. B. 2009. Vol. 23. P. 4277.
- [14] Bean C.P. // Rev. Mod. Phys. 1964. Vol. 36. P. 31.
- [15] Ростами Х.Р. // ПТЭ. 2004. N 6. С. 95.
- [16] Афанасьев М.С., Базлов А.Н., Губанков В.Н. и др. // Радиотехника. 2005. Вып. 10. С. 88.
- [17] Можаев П.Б., Овсянников Г.А., Кюле А. и др. // СФХТ. 1995. Т. 8. С. 288.
- [18] Scherer T., Marienhoff P., Herwig R. et al. // Physica C. 1992. Vol. 197. P. 79.
- [19] Hilgenkamp H., Mannhart J. // Rev. Mod. Phys. 2002. Vol. 74.
 P. 485.
- [20] Clem J.R. // Physica C. 1988. Vol. 153-155. P. 50.
- [21] Бароне А., Патерно Дж. Эффект Джозефсона. Физика и применения. М.: Мир, 1984. 640 с.
- [22] Сонин Э.Б. // Письма в ЖЭТФ. 1988. Т. 47. С. 415.