05

Сопротивление канала импульсного электрического пробоя в ионных кристаллах

© И.Ф. Пунанов,¹ Р.В. Емлин,¹ В.Д. Куликов,² С.О. Чолах³

¹ Институт электрофизики УрО РАН, 620016 Екатеринбург, Россия ² Томский сельскохозяйственный институт, 634009 Томск, Россия ³ Уральский федеральный университет им. первого президента России Б.Н. Ельцина, 620002 Екатеринбург, Россия e-mail: ivan.punanov@gmail.com

(Поступило в Редакцию 18 февраля 2013 г. В окончательной редакции 16 сентября 2013 г.)

Предложена методика оценки сопротивления канала электрического пробоя в ионных кристаллах. Методика основана на измерении скорости движения канала в образце при подключении балластного резистора в цепь игольчатого анода и использовании теоретической зависимости скорости движения канала от его проводимости. Сопротивление канала в KCl и KBr при напряжении 140 kV составляет соответственно $\approx 6.5 \, \mathrm{k\Omega}$ и $\approx 6.1 \, \mathrm{k\Omega}$. Показано, что данные сопротивления характеризуют газовую фазу. Обнаружена неоднородность сопротивления газовой фазы вдоль канала пробоя. Наибольшим сопротивлением обладает головная область длиной $\sim 1 \, \mathrm{mm}$. Сделан вывод, что головная область содержит кластеры вещества диэлектрика с их дальнейшим распадом на ионы металла и галогена. Время жизни кластеров $\sim 10^{-9} \, \mathrm{s}$.

Введение

Процесс формирования канала пробоя в твердых диэлектриках включает в себя механизмы генерации первичных электронов, распространения канала, образования газовой фазы [1,2]. В работе [3] рассмотрена модель канала электрического пробоя в кристаллическом NaCl с учетом генерации носителей заряда посредством каскадных оже-переходов. Внутренняя структура канала пробоя содержит области газовой фазы, переходного нагретого слоя и объемного заряда. Процесс продвижения фронта канала связан с межатомными оже-переходами и вытягиванием электронов из области объемного заряда. Скорость движения определяется напряженностью электрического поля, временем оже-перехода и проводимостью канала. Данные по электрическому сопротивлению канала пробоя представляют интерес при решении ряда теоретических и практических вопросов, в частности, возможностью уточнения механизма выделения тепла и образования газовой фазы в канале пробоя. К таким механизмам можно отнести либо джоулев нагрев при протекании предпробойного тока [1], либо безызлучательная рекомбинация свободных электронов и дырок [3]. Недостаточно изучен состав и уровень ионизации газовой фазы. Знание удельного сопротивления канала пробоя необходимо при расчете электровзрыва в твердом теле, однако прямые его измерения сложны, что связано с распространением канала в диэлектрической среде, высокой скоростью, малым диаметром канала пробоя.

В настоящей работе решается проблема оценки сопротивления канала электрического пробоя в щелочногалоидных кристаллах, включая конкретизацию сопротивления газовой фазы за счет измерения скорости распространения канала пробоя в образцах разной толщины. Подходом к определению сопротивления может служить изменение скорости пробоя с помощью методики, подразумевающей подключение балластного резистора в цепь игольчатого анода [4,5]. Результаты этих измерений и теоретическая связь скорости распространения канала с его проводимостью [3] позволяют рассчитать сопротивление канала.

Методика эксперимента и результаты

Источником наносекундных импульсов высокого напряжения в эксперименте служил импульсный генератор. Импульсы напряжения с амплитудой 140 kV длительностью ≈ 8 ns с фронтами менее 0.5 ns генерировались в результате разряда коаксиальной формирующей линии генератора с $Z = 50 \Omega$, заряжаемой от трансформатора Тесла, через искровой газовый разрядник высокого давления [6]. Схема экспериментальной установки показана на рис. 1.

Образцы щелочно-галоидных кристаллов KCl, KBr в виде пластинок толщиной $d \sim 0.5-3$ mm устанавливали между электродами конфигурации "острие—плоскость" в ячейке, заполненной трансформаторным маслом. На острие подавали импульсы напряжения положительной полярности. К отрицательному электроду подключали токовый шунт и делитель напряжения, которые соединялись с цифровым запоминающим осциллографом Tektronix TDS644B.

Скорость распространения канала пробоя определяли по отношению толщины образца ко времени задержки сигнала тока через образец t_c , т.е. промежутку времени

Рис. 1. Схема экспериментальной установки. Цифрами на рисунке обозначены: 1 — плоский катод, 2 — образец, 3 — игольчатый анод, 4 — балластный резистор, 5 — токовый шунт, 6 — резистивный делитель напряжения, 7 — емкостный делитель напряжения, 8 — ограничивающий (зарядный) резистор, 9 — батарея конденсаторов на 1μ F, 10 — управляемый газовый разрядник РУ-62, 11, 12 — первичная и вторичная обмотки трансформатора Тесла, 13, 14 — внутренний и внешний проводники формирующей линии генератора, 15 — неуправляемый газовый разрядник Р-43.

Рис. 2. Зависимость времени пробоя t_c от толщины образцов d: a — KCl: I — пробой с анода при 140 kV; при подключении балластных резисторов R_b в цепь анода: 2 — 1.2, 3 — 2.7 k Ω ; b — KBr: I — пробой с анода при 140 kV, 2 — при подключении в цепь анода $R_b = 2.7$ k Ω .

между моментом подачи импульса и моментом резкого возрастания тока через образец, что фиксировалось осциллографом. Время пробоя измерялось при пробое с игольчатого анода, а также при пробое с включенным в цепь игольчатого анода маломощным балластным резистором R_b . В работе использовали углеродистые резисторы типа CF двух номиналов 1.2 и 2.7 k Ω мощностью 0.125 W.

Характерный вид зависимости времени пробоя t_c от толщины образцов d с балластными резисторами и без них представлен на рис. 2. Подключение балластного резистора R_b приводит к увеличению времени t_c и соответственно к уменьшению скорости пробоя в кристалле по сравнению с пробоем с игольчатого анода. Для тонких образцов (0.5-0.8 mm) при пробое с балластным резистором время пробоя t_c оказывается практически постоянным. В области $d \sim 1-3 \,\mathrm{mm}$ время t_c увеличивается пропорционально толщине, в то время как при толщинах более 4 mm растет быстрее. Линейный рост времени t_c с толщиной образцов, вероятно, связан с условиями формирования продольной составляющей напряженности электрического поля в кристалле за счет радиального распределения электрического поля в коаксиальной линии и неоднородности напряженности поля на границе головной части канала [7].

По данным измерений t_c в образцах КСІ при напряжении 140 kV средняя скорость движения канала пробоя V составляла $4.5 \cdot 10^7$ cm/s и при подключении балластных сопротивлений 1.2 и 2.7 k Ω скорость V_d уменьшалась соответственно до $\approx 3.2 \cdot 10^7$ и $\approx 2.2 \cdot 10^7$ cm/s. В образцах КВг значение $V \approx 5 \cdot 10^7$ cm/s и $V_d \approx 2.4 \cdot 10^7$ cm/s при $R_b = 2.7$ k Ω .

Расчет сопротивления канала пробоя

Согласно модели движения канала пробоя [3] фронт канала совпадает с границей объемного заряда (O3). На поверхности O3 в кристалле NaCl находятся ионы Cl⁺, а в KCl ионы K⁺⁺, Cl⁺, более глубокие слои содержат ионы Na⁺, Cl⁰ и K⁺, Cl⁰ соответственно [3,8–10]. Электрическое поле O3 будет искривлять энергетические зоны кристалла. Как показано в [10], локальное электрическое поле объемного заряда E_L за счет слоя двукратно положительно заряженных ионов Cl⁺ в NaCl и K⁺⁺, Cl⁺ в KCl способно на межатомных расстояниях создавать изгибы зон, сопоставимые с шириной запрещенной зоны кристалла.

Механизм движения канала пробоя в образцах щелочно-галоидных кристаллов, KCl, KBr с кристаллографическим направлением канала пробоя $\langle 100 \rangle$ имеет свои особенности по сравнению с рассмотренным в NaCl с направлением $\langle 110 \rangle$ [3,8–10]. В частности, в кристалле KCl рекомбинация дырки на ионах галогена Cl⁺ связана с переходом электрона с 3*p*-уровня K⁺. Для резонансного переноса электрона необходимо поднять 3*p*-уровень K⁺ в KCl на ~ 6.1 eV. Последующий распад

Рис. 3. Схема движения канала пробоя в кристаллическом KCl; W_c , W_v — уровни энергии: дна зоны проводимости и потолка валентной зоны кристалла, x_1 — длина канала пробоя, x_2 — положение отрицательного электрода.

дырки на K^{++} происходит в результате межатомного оже-перехода с рождением дырок на 3p-уровне Cl^- и электрона проводимости. Схема движения канала пробоя в образце KCl в принятом одномерном случае показана на рис. 3.

Единичный цикл движения канала пробоя можно представить в виде трех этапов. На первом этапе при достижении критической напряженности электрического поля $E_L \sim 10^8$ V/cm происходит резонансный переход электрона от K⁺ к иону Cl⁺ за время τ_r и канал продвигается на межатомное расстояние (рис. 3, *a*). На втором этапе происходит межатомный оже-переход электронов с 3p-уровня Cl⁻ на K⁺⁺ в зону проводимости за время τ , и канал продвигается еще на одно межатомное расстояние (рис. 3, *b*). Время оже-перехода τ может составлять $\sim 10^{-14} - 10^{-17}$ s [11]. Наличие отрицательного заряда электронов понижает поле заряда дырок и соответственно изгиб зон вблизи границы $x = x_1$. Третий этап связан с вытягиванием электронов из области положительного объемного заряда за время τ_1 и достижением критиче-

ской напряженности E_L для реализации резонансного перехода (рис. 3, c).

Длительность единичного цикла движения канала равна $\Delta t = \tau_r + \tau + \tau_1$. В кристалле KCl расстояние между разноименными ионами в решетке a = 3.14 Å число ионов на 1 cm составляет $N = 3.2 \cdot 10^7$. Учитывая, что за единичный цикл движения канал пробоя продвигается на расстояние двух межатомных расстояний при скорости $V = 4.5 \cdot 10^7$ cm/s время $\Delta t =$ $= 1 \text{ cm}/(V \cdot N/2) = 1.4 \cdot 10^{-15}$ s. Таким образом, за единичный цикл канал пробоя продвигается на два межатомных расстояния при одном этапе вытягивания электрона из области положительного объемного заряда.

Сопротивление канала пробоя складывается из сопротивлений участка с газовой фазой Rg, переходного твердого слоя R_i и области объемного заряда R_{ch} [3]. Суммарное сопротивление канала $R_0 = R_g + R_i + R_{ch}$. В первом приближении можно считать удельную проводимость в пространстве 0-x1 постоянной величиной $\sigma_0 = x_1/SR_0 = en_0\mu$, где e, μ —- электрический заряд и подвижность электрона, n0 — эффективная концентрация электронов, S — площадь поперечного сечения канала пробоя. Временная зависимость электрического поля Е_L моделировалась кинетикой поля пространственного заряда дырок в кристалле NaCl [3]. Формирование заряда с начальным равномерным распределением свободных электронов и неподвижных дырок при напряженности электрического поля в образце $E_0 \sim 10^6 \,\mathrm{V/cm}$ описывалось уравнениями непрерывности и Пуассона. Получены выражения для напряженности электрического поля на границе пространственного заряда E_S и времени τ_1 . Расчет времени τ_1 в образце KCl не отличается от представленного в [3] для NaCl

$$\Delta t = \tau_r + \tau + \frac{n_1 \Delta x^2 \varepsilon \varepsilon_0 e}{E_0 \tau \left(1 - x_1 / x_2\right) x_1 \sigma_0^2} \left(\exp\left(\frac{t_k}{\tau_c}\right) - 1 \right),\tag{1}$$

где $\Delta x \approx 3 \text{ Å}$ — толщина атомного слоя в кристалле. Исходная концентрация оже-электронов, вероятно, составляет $n_1 \approx 10^{21} \text{ cm}^{-3}$, t_k — время от t = 0 до момента включения оже-генерации. Время действия ожегенерации от t_k до $t_k + \tau$, ε и ε_0 — диэлектрическая проницаемость образца и электрическая постоянная соответственно, $\tau_c = \varepsilon \varepsilon_0 x_2 / \sigma_0 (x_2 - x_1)$ — постоянная времени цепи. Согласно (1), длительность цикла связана с проводимостью обратной квадратичной зависимостью, что дает повышенную чувствительность Δt к изменению σ_0 .

При подключении балластного резистора R_b общее сопротивление цепи R_z равно

$$R_z = R_b + R_0. \tag{2}$$

Роль балластного резистора при расчете напряженности электрического поля E_S и времени τ_1 [3] можно учесть, подключив его к образцу при x = 0 в виде тонкого слоя толщиной $\Delta x_b \ll x_2$ с постоянной проводимостью и диэлектрической проницаемостью ε . Представим R_z через удельную проводимость σ_z , длину x_1 и площадь S

$$\frac{x_1}{\sigma_z S} = R_0 \left(\frac{R_b}{R_0} + 1\right). \tag{3}$$

Дальнейший ход расчета E_S и τ_1 с проводимостью σ_z не отличается от рассмотренного ранее [3]. Для времени Δt при $x_1 > \Delta x_b$ получим

$$\Delta t = \tau_r + \tau + \frac{n_1 \Delta x^2 \varepsilon \varepsilon_0 e}{E_0 \tau \left(1 - x_1 / x_2\right) x_1 \sigma_z^2} \left(\exp\left(\frac{t_k}{\tau_c'}\right) - 1 \right),\tag{4}$$

где $au_c' = arepsilon arepsilon_0 x_2 / \sigma_z (x_2 - x_1).$

Оценка сопротивления канала пробоя по экспериментальным данным скорости и теоретическим расчетам (1) и (4) возможна с учетом ряда приближений. Значение $\exp(t_k/\tau_c')$ в (4), видимо, мало отличается от исходного в (1), так как с ростом τ_c' должно увеличиваться время срабатывания t_k . Для кристаллов KCl, KBr получены максимальные значения скорости $V \approx 2 \cdot 10^8$ cm/s для напряжения 240 kV [2,5], что дает $\Delta t \approx 3.1 \cdot 10^{-16}$ s. Вероятно, время электронных переходов τ_r и τ не превышает $\sim 10^{-16}$ s. Так как при напряжении 140 kV скорость значительно меньше и время $\Delta t \approx 1.4 \cdot 10^{-15}$ s, то в (1) и (4) значениями τ_r и τ можно пренебречь по сравнению с временем вытягивания τ_1 . В этом случае отношение скоростей пробоя с балластным сопротивлением и без него с учетом (1) и (4) будет иметь вид

$$\frac{V_b}{V} \approx \left(\frac{\sigma_z}{\sigma_0}\right)^2. \tag{5}$$

Переходя от проводимости σ_0 и σ_z к сопротивлениям R_0 и R_z уравнение (5) запишется

$$\frac{V_b}{V} \approx \frac{1}{(R_b/R_0 + 1)^2}.$$
 (6)

Под R_0 подразумевается значение сопротивления канала пробоя при $x_1 = x_2$. График зависимости (6) изменения относительной скорости движения канала пробоя V_b/V с ростом значения R_b/R_0 имеет вид падающей кривой. Уменьшение скорости пробоя с ростом балластного сопротивления связано с увеличением сопротивления цепи для протекания предпробойного тока. Расчет сопротивления канала в образцах КСІ и КВг по данным отношения скоростей V_b/V при подключении балластных резисторов 1.2 и 2.7 kΩ сводился к определению значения R_b/R_0 с использованием калибровочного уравнения (6) и затем R_0 .

Зависимость сопротивления канала пробоя от толщины образцов KCl, KBr при подключении балластных резисторов показана на рис. 4. Сопротивление R_0 в области 0.5–0.8 mm увеличивается практически линейно с длиной канала, в диапазоне 0.8–1.1 mm проходит стадию насыщения и затем остается постоянным до

Рис. 4. Зависимость сопротивления канала пробоя R_0 от толщины образцов d: a — KCl при подключении балластных резисторов R_b : I — 2.7 k Ω , 2 — 1.2 k Ω ; b — KBr при подключении $R_b = 2.7$ к Ω .

максимально измеренных толщин 2.5-3 mm. Усредненное сопротивление канала за границей насыщения в KCl составляет $R_0 \approx 6.5 \text{ k}\Omega$ и несколько меньше в KBr $\approx 6.1 \text{ k}\Omega$.

Удельная проводимость канала при напряжении на аноде 140 kV, диаметре канала в КСl и КВг близком к ~ 10 μ m [2], длине канала 1 mm, сопротивлении в КCl $R_0 \approx 6.5 \,\mathrm{k\Omega}$ составляет $\sigma_0 \approx 20 \,\Omega^{-1} \mathrm{cm}^{-1}$ и в КВг при $R_0 \approx 6.1 \,\mathrm{k\Omega}$ равна $\sigma_0 \approx 21 \,\Omega^{-1} \mathrm{cm}^{-1}$. Более высокая проводимость в КВг по сравнению с КСl удовлетворительно согласуется с более высокой скоростью движения канала пробоя согласно уравнению (1). С учетом экспериментальной плотности предпробойного тока ~ 10⁵ A/cm² [1] за время ~ 10⁻⁹ s в единице объема КСl выделится джоулева энергия ~ 5 $\cdot 10^{-1} \,\mathrm{J/cm^3}$, что значительно меньше теплоты плавления ~ 0.68 kJ/cm³.

Температуру, близкую к температуре плавления, обеспечивает механизм рекомбинационного выделения тепла за счет уменьшения концентрации носителей в переходном слое от $\sim 10^{21}\,{\rm cm}^{-3}$ до $10^{16}\,{\rm cm}^{-3}$ [3]. Переходная область находится, вероятно, в твердом состоянии, так как тепловое давление составляет $\sim 10^9$ Ра. Учитывая, что прочность на разрыв щелочно-галоидных кристаллов не превышает $\approx 5 \cdot 10^6$ Ра, деформации в нагретой области вдоль оси канала в направлении положительного электрода приведут к разрушению вещества и образованию газовой фазы. Длина переходной области от твердого тела к газовой фазе оценивалась как произведение времени разрушения материала под действием упругих напряжений на скорость движения канала пробоя. Протяженность переходной области канала при скоростях $V \sim 10^7 - 10^8$ cm/s составляет $\tau_a V \sim 10 - 100 \,\mu$ m, где $\tau_a \approx 10^{-10} \,\mathrm{s}$ — время акустической релаксации [3]. Результат оценки размера переходной области (десятки микрон) находится в согласии с данными работ [1,2], где показано, что свечение в канале пробоя связано с разрядом в газовой фазе, а протяженность свечения и длина канала имеют близкие значения.

Свечение канала, экспериментальная зависимость хода сопротивления R_0 от толщины образцов (рис. 4) с ростом сопротивления, последующей стабилизацией и постоянством от длины канала в области 1.5-3 mm, дают основание считать полученные сопротивления в KCl, KBr (6.5 и 6.1 k Ω), в большей степени соответствующими газовому промежутку. Сопротивления переходного слоя и пространства объемного заряда, вероятно, достаточно малы при высокой концентрации носителей и малой длине областей [3].

Следует отметить, что неоднородность сопротивления газовой фазы вдоль канала пробоя отражает временной процесс формирования газовой фазы по составу и уровню ионизации. Вероятно, головная область газовой фазы с повышенным сопротивлением включает в состав микрочастицы кристалла. Под действием температуры кластеры распадаются на ионы металла и галогена. Время жизни таких кластеров можно определить как $\sim 0.1 \ {\rm cm}/{4.5} \cdot 10^7 \ {\rm cm} \ {\rm s}^{-1} = 2.2 \cdot 10^{-9} \ {\rm s}.$

Высокое сопротивление головной части газовой фазы канала пробоя за счет низкого уровня содержания ионов согласуется с данными исследования энергомассового состава плазмы, образующейся в первичном канале пробоя образцов КСІ и при последующих разрядах в капилляре канала [12]. При первичном пробое не удалось обнаружить многозарядные ионы материала диэлектрика в потоке плазмы, истекающей из канала пробоя как по измерениям ионного тока цилиндром Фарадея, так и по показаниям масс-спектрометра. Тем не менее при последующем пробое по уже образованному каналу резко возрастает ионный ток и регистрируются высокозарядные ионы с энергиями 0.1-2 keV. По мнению авторов [12] отсутствие многозарядных ионов материала образца при первом пробое КСІ позволяет предположить либо недостаток условий для ускорения тяжелых ионов до энергий в 100-300 eV, либо их малое количество.

Заключение

Предложена и реализована методика оценки сопротивления канала электрического пробоя в ионных кристаллах. Сопротивления каналов при напряжении 140 kV составляют соответственно в KCl $\approx 6.5 \, \mathrm{k\Omega}$ и несколько меньше в KBr $\approx 6.1 \, \mathrm{k}\Omega$. Полученные сопротивления характеризуют в большей степени сопротивление газовой фазы. Обнаружена неоднородность сопротивления газовой фазы вдоль канала пробоя. Наибольшим сопротивлением обладает головная область длиной ~ 1 mm. Вероятно, эта область содержит кластеры вещества диэлектрика. В дальнейшем за время жизни $\sim 10^{-9}\,{
m s}$ кластеры распадаются на ионы металла и галогена. Более низкое сопротивление канала пробоя в KBr по сравнению с КСl удовлетворительно согласуется с более высокой скоростью движения канала. Выбор рекомбинационного механизма выделения тепла подтверждается экспериментально.

Оценка проводимости позволит уточнить механизм формирования канала и выйти на более высокий уровень моделирования сложного явления электрического пробоя.

Работа поддержана Российским фондом фундаментальных исследований (грант № 11-08-01003).

Список литературы

- [1] Воробьев А.А., Воробьев Г.А. Электрический пробой и разрушение твердых диэлектриков. М.: Высшая школа, 1966. 234 с.
- [2] Вершинин Ю.Н. Электронно-тепловые и детонационные процессы при электрическом пробое твердых диэлектриков. Екатеринбург: Издательство УрО РАН, 2000. 258 с.
- [3] Куликов В.Д. // ЖТФ. 2012. Т. 82. Вып. 2. С. 35-40.
- [4] Емлин Р.В. Патент РФ № 2108592 от 10.04.1998 г.
- [5] Емлин Р.В., Белоглазов В.А. Труды 6-й научной школы "Физика импульсных воздействий на конденсированные среды". Николаев, 1993. С. 195.
- [6] Месяц Г.А. Импульсная энергетика и электроника. М.: Наука, 2004. 704 с.
- [7] Лебедев И.В. Техника и приборы СВЧ. М.: Высшая школа, 1970. 440 с.
- [8] Куликов В.Д. // Письма в ЖТФ. 2000. Т. 26. Вып. 4. С. 77–82.
- [9] Куликов В.Д. // ЖТФ. 2003. Т. 73. Вып. 12. С. 26-30.
- [10] Куликов В.Д. // ЖТФ. 2009. Т. 79. Вып. 1. С. 60–65.
- [11] Немошкаленко В.В., Алешин В.Г. Электронная спектроскопия кристаллов. Киев: Наукова думка, 1976. 336 с.
- [12] Барахвостов С.В., Музюкин И.Л. // ЖТФ. 2009. Т. 79. Вып. 5. С. 29–32.