01

Об условиях возникновения щели, наводимой полупроводниковой подложкой в плотности состояний эпитаксиального графена

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, 197101 Санкт-Петербург, Россия e-mail: Sergei_Davydov@mail.ru

(Поступило в Редакцию 22 августа 2013 г.)

Для описания плотности состояний полупроводниковой подложки использована модель, отвечающая параболическому электронному спектру. В аналитической форме получены критерии возникновения щели/щелей в плотности состояний эпитаксиального графена и ее/их характеристики (ширина, расположение по отношению к запрещенной зоне подложки). Предложен способ экспериментальной проверки полученных результатов.

Проблема эпитаксиального графена [1-4] привлекает внимание в первую очередь в связи с разработкой планарных приборных структур. Второй момент — возможность создания графенового слоя (слоев) непосредственно на SiC-подложке. С точки зрения теории основным здесь является вопрос о том, как подложка влияет на спектр электронных состояний графена. В случае полупроводникового субстрата, самое существенное понять, появляется ли в спектре графена энергетическая щель, и если появляется, то при каких условиях. Модельному подходу к ответу на этот последний вопрос были посвящены работы [5,6], где для описания субстрата использовалась модель Халдейна-Андерсона [7]. В этой модели энергетическая плотность состояний $\rho_s(\omega)$, где *ω* — энергетическая переменная, задается двумя прямоугольными полубесконечными ступеньками одинаковой высоты [7], разделенными запрещенной зоной E_g .

В работах [5,6] удалось проанализировать, как местоположение и ширина Δ возникающей в спектре эпитаксиального графена щели зависят от взаиморасположения точки Дирака графена ω_D и запрещенной зоны подложки E_{σ} . Не было, однако, получено критерия возникновения щели, связывающего энергию взаимодействия между ближайшими атомами углерода свободного графена t и матричный элемент взаимодействия атома графена с подложкой V. Между тем ясно, что при $t/V \gg 1$ имеем квазисвободный графен, т.е. бесщелевой; при $t/V \ll 1$ говорить о графене уже нет смысла. Обстоятельством, помешавшим получить в работах [5,6] обсуждаемый критерий, явилась сама модель Халдейна-Андерсона [7]. Наличие скачков-ступенек в функции $\rho_s(\omega)$ приводит к появлению расходимостей в плотности состояний, так что, строго говоря, щели появляются уже при сколь угодно малом значении V. Поэтому в настоящей работе предложим хоть и простую, но более реалистичную модель $\rho_s(\omega)$, позволяющую найти критерий возникновения щели в эпитаксиальном графене.

Будем считать, что подложке отвечает параболический закон дисперсии, так что энергетическая плотность состояний $\rho_s(\omega)$ есть

$$\rho_s(\omega) =$$

$$\begin{cases} A_C \sqrt{\omega - E_g/2}, & E_g/2 < \omega \le W_C + E_g/2, \\ A_V \sqrt{-\omega - E_g/2}, & -W_V - E_g/2 \le \omega < -E_g/2, \\ 0, & |\omega| \le E_g/2, & |\omega| > W_{C,V} + E_g/2. \end{cases}$$
(1)

Здесь $A_{C,V} = A'_{C,V}\Omega$, где $A'_{C,V} = \sqrt{2}m^{3/2}_{dc,v}/\pi^2\hbar^3$, где $m_{dc(v)}$ — эффективная масса для плотности состояний зоны проводимости (валентной зоны) [8,9], Ω — объем элементарной ячейки, $W_{C(V)}$ — ширина зоны проводимости (валентной зоны), за нуль энергии принято положение центра запрещенной зоны субстрата. Параметры $A_{C,V}$ и $W_{C,V}$ не являются независимыми. Действительно, из того обстоятельства, что в зонах разрешенных состояний нужно разместить N_e электронов, следует условие

$$\int_{-\infty}^{\infty} (\omega) d\omega = N_e, \qquad (2)$$

которое, например, в случае соединений $A_N B_{8-N}$ сводится к $A_{C,V} W_{C,V}^{3/2} = 6$.

Мы здесь обрезали плотности состояний на внешних краях зоны проводимости и валентной. В принципе не трудно было бы ввести более адекватную модель, лишенную скачков при $\omega = \pm (W + E_g/2)$. В настоящий момент, однако, нас интересует лишь область энергий, перекрывающаяся с запрещенной зоной, и не интересует периферия.

Как показано в [5,6], локальная (на один атом) плотность состояний однослойного эпитаксиального графена

 $\rho_g(\omega)$ дается выражением

$$\rho_{g}(\omega) = \frac{1}{\pi\xi^{2}} \bigg[\Gamma(\omega) \ln \frac{\left(\overline{\Omega} \mp \xi\right)^{2} + \Gamma^{2}(\omega)}{\overline{\Omega}^{2} + \Gamma^{2}(\omega)} \\ + 2\overline{\Omega} \left(\arctan \frac{\overline{\Omega}}{\Gamma(\omega)} - \arctan \frac{\overline{\Omega} \mp \xi}{\Gamma(\omega)} \right) \bigg], \quad (3)$$

$$\Gamma(\omega) = \pi V^2 \rho_s(\omega), \qquad (4)$$

$$\Lambda(\omega) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\Gamma(\omega') d\omega'}{\omega - \omega'} d\omega', \qquad (5)$$

где P — символ главного значения, $\Omega = \omega - \varepsilon_a$, где $\varepsilon_a \equiv \omega_D$, $\overline{\Omega} \equiv \Omega - \Lambda(\omega)$, $\xi \equiv 3taq_B/2$, q_B — вектор обрезания [5,6], a — расстояние между ближайшими соседями в графене; верхний знак в (2) относится к π^* -зоне ($\overline{\Omega} > 0$), нижний — к π -зоне графена ($\overline{\Omega} < 0$).

Подставляя (1) и (4) в (5) и полагая для простоты $A_C = A_V = A$, $W_C = W_V = W$, получим приведенную функцию сдвига $\overline{\Lambda}(\omega) = \Lambda(\omega)/AV^2$ в виде

$$\overline{\Lambda}(\omega) = \begin{cases} F_{-}(\omega) - L_{-}(\omega), & \omega < -E_g/2, \\ F_{-}(\omega) - F_{+}(\omega), & -E_g/2 \le \omega \le E_g/2, \\ -F_{+}(\omega) + L_{+}(\omega), & \omega > E_g/2, \end{cases}$$
(6)

где

$$F_{\pm}(\omega) = 2\sqrt{\pm\omega + E_g/2} \arctan \frac{\sqrt{W}}{\sqrt{\pm\omega + E_g/2}},$$
$$L_{\pm}(\omega) = \sqrt{\pm\omega - E_g/2} \ln \left| \frac{\sqrt{\pm\omega - E_g/2} + \sqrt{W}}{\sqrt{\pm\omega - E_g/2} - \sqrt{W}} \right|.$$
(7)

Для дальнейшего анализа удобно ввести безразмерные величины: энергию $x = 2\omega/E_g$, ширину зоны $w = 2W/E_g$, функцию уширения квазиуровня $\gamma(x) = -\Gamma(x)/\Gamma_0$, $\Gamma_0 = \pi A V^2 \sqrt{E_g/2}$, функцию сдвига квазиуровня $\lambda(x) = \Lambda(x)/A V^2 \sqrt{E_g/2}$.

Функция $\lambda(x)$ представлена на рис. 1. Из рисунка следует, что при $x = \pm 1$ ($\omega = \pm E_g/2$) имеются экстремумы функции $\lambda(x)$, а расходимости, присущие модели Халдейна–Андерсона, отсутствуют. Наличие же расходимостей при $x = \pm 4$ ($\omega = \pm(W + E_g/2)$) не вносит искажений в поставленную здесь задачу (см. ниже). Отметим, что

$$\overline{\Lambda}_{\max} \equiv \left| \overline{\Lambda}(\pm E_g/2) \right| = 2\sqrt{E_g} \arctan \sqrt{W/E_g}.$$
 (8)

Рассмотрим теперь плотность состояний эпитаксиального графена (3) в области энергий, соответствующих запрещенной зоне субстрата, т.е. при $|\omega| < E_g/2$. В этой области функция $\Gamma(\omega)$ тождественно равна нулю, так что (3) сводится к выражению

$$\rho_{g}(\omega) = \frac{2\overline{\Omega}}{\pi\xi^{2}} \left(\operatorname{arctg} \frac{\overline{\Omega}}{s} - \operatorname{arctg} \frac{\overline{\Omega} \mp \xi}{s} \right), \qquad (9)$$

Рис. 1. Зависимость приведенной функции сдвига $\lambda(x)$ от безразмерной энергии *x* при w = 3. Области (-4, -1), (1, 4), выделенные на оси y = 0 жирными отрезками, отвечают соответственно валентной зоне и зоне проводимости.

где $s = 0^+$. Значение $\rho_g(\omega)$ обращается в нуль при условии выполнении неравенства

$$\overline{\Omega}(\overline{\Omega} \mp \xi) > 0, \tag{10}$$

где по-прежнему знак минус относится к случаю $\overline{\Omega} > 0$, знак плюс — к $\overline{\Omega} < 0$. Таким образом, при $\overline{\Omega} > 0$ условием выполнения неравенства (9) является $\overline{\Omega} > \xi$. В обратном же случае $\overline{\Omega} < 0$ условие (3) выполняется при $\overline{\Omega} < -\xi$. Объединяя два этих случая, получим окончательное неравенство, эквивалентное (10), в виде $|\overline{\Omega}| > \xi$ или

$$|\omega - \varepsilon_a - \Lambda(\omega)| > \xi, \tag{11}$$

или в безразмерном виде

$$|z - \eta_a - C\lambda(x)| > \xi, \tag{12}$$

где $C = AV^2 \sqrt{2/E_g}, \eta_a = 2\varepsilon_a/E_g, \xi = 2\xi/E_g.$

Рассмотрим для начала простейший (симметричный) случай, когда $\varepsilon_a = 0$ (точка Дирака графена совпадает с центром запрещенной зоны субстрата). Рис. 2 иллюстрирует решение неравенства (12). В случае C = 1(график *I* на рис. 2) при $\xi = \xi_1 = 3.70$ неравенство (12) не выполняется, так что щели в спектре графена отсутствуют. При $\xi = \xi_2 = 2.80$ неравенству (12) отвечают области (-1, -0.95) для Δ_- и (0.95, 1) для Δ_+ (здесь и в дальнейшем щель, расположенная в нижней части запрещенной зоны субстрата, будет обозначаться как Δ_- , в верхней — как Δ_+). При $\xi = \xi_3 = 0.56$ эти области расширяются и становятся равными (-1, -0.25) и (0.25, 1) для Δ_- и Δ_+ соответственно. Именно эти

Рис. 2. К решению неравенства (12) при w = 3, $\eta_a = 0$, C = 1 (1) и C = 0.25 (2), $\xi_1 = 3.70$, $\xi_2 = 2.80$, $\xi_3 = 0.56$.

Рис. 3. Плотность состояний графена в области запрещенной зоны подложки при w = 3, C = 1, $\xi_1 = 3.70$, $\xi_2 = 2.80$, $\xi_3 = 0.56$.

области и отвечают щелям в спектре эпитаксиального графена. В случае C = 0.25 (график 2 на рис. 2) при $\xi = \xi_1$ и $\xi = \xi_2$ неравенство (12) не выполняется, так что щель в спектре графена отсутствует. При $\xi = \xi_3$ щели по сравнению со случаем C = 1 сужаются. Таким образом, увеличение $\xi \propto t$ при C = const ведет к сужению щелей и к их исчезновению при определенном критическом значении ξ_{max} . С другой стороны, увеличение $C \propto V^2$ при

 $\xi = \text{const}$ ведет к расширению существующих щелей и возникновению новых.

Определим значение ξ_{max} из (11). Для симметричного случая имеем

$$\xi_{\max} = \frac{1}{2} E_g + 2AV^2 \sqrt{E_g} \arctan \sqrt{W/E_g}.$$
(13)

При $\xi < \xi_{\text{max}}$ в плотности состояний эпитаксиального графена имеются две щели, расположенные симметрично относительно центра запрещенной зоны подложки.

В областях энергий, где щели отсутствуют, плотность состояний графена

$$\rho_g(\omega) = \frac{2|\overline{\Omega}|}{\xi^2}.$$
(14)

На рис. З представлена приведенная плотность состояний $\rho_g^*(x) = \rho_g(x)(E_g/2)$ в области запрещенной зоны для случая C = 1 и $\xi = \xi_1, \xi_2, \xi_3$.

Перейдем теперь к асимметричному случаю, полагая $\varepsilon_a \neq 0$. На рис. 4 представлен графический подход к решению неравенства (12) для $\eta_{a1} = 0.5$, $\eta_{a2} = 1.0$, $\eta_{a3} = 2.0$. Из рисунка следует, что при $\xi = \xi_1 = 3.70$, когда в симметричном случае щели отсутствовали (рис. 2), в асимметричном случае щель Δ_{-} возникает для всех рассмотренных значений η_a , причем $\Delta_{-3} > \Delta_{-2} > \Delta_{-1}$. С другой стороны, в асимметричном случае щель Δ_{-} возникает только при $\xi < 3$. Таким образом, при $\eta_a > 0$ щели Δ_{-} в асимметричном случае уширяются (открываются) по сравнению с симметричным случаем, а щели Δ_{+} , наоборот, сужаются (исчезают). При $\eta_a < 0$ возникает обратная картина.

Рис. 4. К решению неравенства (12) при w = 3, C = 1, $\xi_1 = 3.70$, $\xi_2 = 2.80$, $\xi_3 = 0.56$. $1 - \eta_a = 0.5$, $2 - \eta_a = 1.0$, $3 - \eta_a = 2.0$.

Запишем критерий возникновения щелей в асимметричном случае

$$\xi_{\max}^{\mp} = \left| \frac{1}{2} E_g \pm \varepsilon_a + 2AV^2 \sqrt{E_g} \arctan \sqrt{\frac{W}{E_g}} \right|.$$
(15)

В заключение отметим, что экспериментальную проверку полученных результатов проще всего осуществить для однослойного эпитаксиального графена, сформированного на гексагональных политипах карбида кремния [6,10–14]. Действительно, при переходе от политипа к политипу меняются, в первую очередь, значения E_g и ξ [15] (и, возможно, A), а при смене Si-грани на C-грань или интеркаляции водорода в пространство между подложкой и слоем графена изменяется значение V.

Работа выполнена в рамках программ Президиума РАН "Квантовая физика конденсированных сред" и "Основы фундаментальных исследований нанотехнологий и наноматериалов" и поддержана грантами РФФИ (проекты №№ 11-02-00662а и 12-02-00165а).

Список литературы

- Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. // Rev. Mod. Phys. 2008. Vol. 81. N 1. P. 109–162.
- [2] Haas J., de Heer W.A., Conrad E.H. // J. Condens. Matter. 2008. Vol. 20. P. 323 202.
- [3] Wu Y.H., Yu T., Shen Z.X. // J. Appl. Phys. 2010. Vol. 108. P. 071 301.
- [4] Cooper D.R., D'Anjou B., Ghattamaneni N., Harack B., Hilke M., Horth A., Majlis N., Massicotte M., Vandsburger L., Whiteway E., Yu V. // arXiv: 1110.6557.
- [5] Давыдов С.Ю. // ФТП. 2013. Т. 47. Вып. 1. С. 97–106.
- [6] Давыдов С.Ю. // Письма в ЖТФ. 2013. Т. 39. Вып. 2. С. 7–14.
- [7] Haldane F.D.M., Anderson P.W. // Phys. Rev. B. 1976. Vol. 13.
 N 6. P. 2553–2559.
- [8] *Киреев П.С.* Физика полупроводников. М.: Высшая школа, 1969. 592 с.
- [9] Persson C., Lindefelt U. // Mater. Sci. Forum Vols. 1998.
 Vol. 264–268. P. 275–278.
- [10] Varshon F., Feng R., Hass J., Li X., Nguen B.N., Naud C., Mallet P., Veuillen J.-Y., Berger C., Conrad E.H., Magaud L. // Phys. Rev. Lett. 2007. Vol. 99. P. 126 805.
- [11] Riedl C., Coletti C., Iwasaki T., Zakharov A.A., Starke U. // Phys. Rev. Lett. 2009. Vol. 103. P. 246 804.
- [12] Siegel D.A., Hwang C.G., Fedorov A.V., Lanzara A. // Phys. Rev. B. 2010. Vol. 81. P. 241 417 (R).
- [13] Mathieu C., Barrett N., Rault J., Mi Y.Y., Zhang B., de Heer W.A., Berger C., Conrad E.H., Renault O. // arXiv: 1104.1359.
- [14] Srivastava N., He G., Luxmi A., Feensta R.M. // Phys. Rev. B. 2012. Vol. 85. P. 041 404 (R).
- [15] Давыдов С.Ю. // ФТП. 2007. Т. 41. Вып. 6. С. 718–720.