05

Магнитные свойства и температурная стабильность сплава типа Файнмет, легированного молибденом

© Б.Н. Филиппов, В.В. Шулика, А.П. Потапов, Н.Ф. Вильданова

Институт физики металлов УрО РАН, 620990 Екатеринбург, Россия e-mail: shulika@imp.uran.ru

(Поступило в Редакцию 27 февраля 2013 г. В окончательной редакции 26 июля 2013 г.)

Исследовано влияние условий нанокристаллизации на структуру, магнитные свойства и температурную стабильность нанокристаллического магнитомягкого сплава Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉. Обнаружено влияние предварительного низкотемпературного отжига на процессы последующей нанокристаллизации сплава. Установлено, что предварительный низкотемпературный отжиг с последующей нанокристаллизацией существенно улучшает магнитные свойства исследуемого сплава. Показано, что, изменяя частоту магнитного поля при термообработке, приводящей к нанокристаллизации, можно получить материал с различными магнитными свойствами. Установлено, что нанокристаллический сплав Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ имеет высокую температурную стабильность магнитных свойств.

Введение

Известно, что нанокристаллические магнитомягкие материалы на основе Fe с добавками Cu и Nb, а также аморфизирующих элементов Si и В обладают превосходными магнитомягкими свойствами, приближающимися к магнитным свойствам аморфных магнитных материалов, но превосходящих их по величине индукции насыщения, а также по временной и термической стабильности [1-5]. В настоящее время ведется активный поиск нанокристаллических магнитомягких сплавов с оптимальными магнитными свойствами и работающих в экстремальных условиях, например, при повышенных температурах. Для повышения термической стабильности магнитных характеристик магнитомягких материалов типа Файнмет, обычно используются следующие пути: 1) легирование сплава тугоплавкими металлами [6-8], играющими ту же роль, что и Nb в Файнметах, но лучше стабилизирующих нанокристаллическую структуру при повышенных температурах; 2) повышение температуры нанокристаллизующего отжига аморфных сплавов [8]. В обоих случаях важное значение имеют исследования корреляции стабильности структуры и магнитных свойств нанокристаллических сплавов [9,10].

В ряде работ [11–14] показано, что хорошие магнитомягкие свойства могут быть получены, если в нанокристаллическом сплаве $Fe_{73.5}Cu_1Nb_3Si_{13.5}B_9$ атомы Nb полностью [12] или частично [11,14] заменены атомами Mo. В частности в [12] установлено, что в сплаве $Fe_{73.5}Cu_1Mo_3Si_{13.5}B_9$ магнитные свойства сильно зависят от температуры отжига T_{an} . Так, начальная восприимчивость при частоте перемагничивания 1 kHz после отжига при $T_{an} \approx 520^{\circ}$ C достигает больших значений ($\sim 7 \cdot 10^4$). Однако при дальнейшем увеличении T_{an} она быстро падает. Одной из причин этого падения, по-видимому, является образование выделений нанокристаллов боридов железа, обладающих большой анизотропией. В [11] показано, что частичная замена Nb

на Мо может приводить не только к достаточно хорошим магнитомягким свойствам, но и улучшать температурно-временную стабильность сплавов. Однако существующие исследования единичны и не могут считаться достаточными для выводов об оптимальных магнитомягких свойствах данного материала. Практически остается не изученным вопрос о корреляции особенностей структуры сплава и магнитных свойств.

Ранее на ряде других сплавов нами были установлены методы, достаточно эффективно влияющие на структуру и магнитные свойства [15]. К ним относятся термомагнитная обработка в переменном магнитном поле, а также осуществляемый перед ней или перед термомагнитной обработкой в постоянном магнитном поле, предварительный отжиг образца в отсутствие магнитного поля.

В настоящей работе для повышения термической стабильности магнитных свойств нанокристаллического сплава Fe-Cu-Nb-Si-В часть атомов Nb замещена атомами более тугоплавкого Мо. С целью улучшения магнитных параметров модифицированного нанокристаллического сплава Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ будет исследовано влияние термических (в частности, предварительного отжига) и термомагнитных (в частности, в переменных полях) обработок (ТМО) на структурные особенности и магнитные характеристики данного магнитомягкого материала. Будет показано, что используемые методы позволяют получить на исследуемых сплавах не только хорошие магнитомягкие свойства, но и высокую термическую стабильность, позволяющую использовать эти сплавы при температурах существенно выше комнатных.

Эксперимент

Аморфные ленты сплавов: $Fe_{73.5}Cu_1Nb_3Si_{13.5}B_9$ и $Fe_{73.5}Cu_1Nb_{1.5}Mo_{1.5}Si_{13.5}B_9$ получали методом закалки

расплава на вращающийся медный диск [16]. Толщина ленты 20-25 µm, ширина — 5 mm. Образцы имели форму колец и полос. Для снятия закалочных напряжений аморфные образцы отжигали в вакууме при температуре 400°С в течение 30 min. Для получения нанокристаллической структуры образцы отжигали в вакууме при температуре 540°С, время отжига варьировалось от 5 min до 6 h. Часть образцов была нанокристаллизована в постоянном или переменном (с частотами f = 50 Hz, 80 kHz) магнитных полях. Термомагнитная обработка была совмещена с переходом сплава из аморфного состояния в нанокристаллическое [2]. ТМО проводили следующим образом: аморфный образец нагревали со скоростью 5°С/тіп до температуры 540°С, выдерживали в магнитном поле 30 min при этой температуре и охлаждали также в магнитном поле до комнатной температуры со скоростью 200° C/h. Напряженность магнитного поля при ТМО составляла 5-10 А/m. Начальная магнитная проницаемость μ_0 , статические и динамические петли гистерезиса были измерены на образцах в форме колец. Начальную магнитную проницаемость определяли в магнитном поле напряженностью 0.05 A/m при частоте 80 Hz. Погрешность измерения составляла ±3%. Динамические петли гистерезиса снимали на автоматизированной магнитоизмерительной установке, разработанной в Институте физики металлов УрО РАН. Погрешность измерения коэрцитивной силы (H_c) не превышала $\pm 3\%$. Погрешность измерения магнитных потерь составляла ±3%. Структуру лент исследовали методом просвечивающей электронной микроскопии на микроскопе JEM-200СХ. Для электронно-микроскопических исследований структуры из образцов в форме полосок методом электрической полировки были изготовлены фольги, в которых самые тонкие участки достигали толщины 150-200 nm. Температура Кюри T_c и температура кристаллизации Т_x для нанокристаллических сплавов были определены по стандартным методикам. Т_с была найдена из температурной зависимости намагниченности насыщения при скорости нагрева образцов — 5°C/min, T_x – из температурного хода электросопротивления при той же скорости нагрева образцов.

Экспериментальные результаты и их обсуждение

На формирование нанокристаллической структуры путем кристаллизации аморфных сплавов влияет их термическая предыстория. Поэтому было исследовано влияние предварительного низкотемпературного отжига аморфных лент сплавов Fe_{73.5}Cu₁Nb₃Si_{13.5}B₉ и Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ на магнитные свойства нанокристаллических образцов, получаемых из этих лент. Отметим, что для этих сплавов $T_x = 540^{\circ}$ C, $T_c = 570^{\circ}$ C.

На рис. 1 представлены статические петли гистерезиса образцов сплава $Fe_{73.5}Cu_1Nb_{1.5}Mo_{1.5}Si_{13.5}B_9$ после следующих обработок: 1) отжиг при температуре 400°C в течение 30 min (кривая 1), 2) отжиг при температуре 400°C в течение 30 min и последующий отжиг

Рис. 1. Статические петли гистерезиса образцов сплава $Fe_{73.5}Cu_1Nb_{1.5}Mo_{1.5}Si_{13.5}B_9$: после отжига при температуре 400°C в течение 30 min (*1*), отжига при температуре 400°C в течение 30 min и последующего отжига при температуре 540°C в течение 5 min (*2*), отжига при температуре 540°C в течение 5 min без предварительного отжига при температуре 400°C (*3*).

при температуре 540° C в течение 5 min (кривая 2), 3) отжиг при температуре 540° C в течение 5 min без предварительного отжига (кривая 3).

Видно, что предварительный низкотемпературный отжиг и последующая термообработка при 540°С даже за короткое время (5 min) приводят к резкому снижению коэрцитивной силы по сравнению с H_c после отжига при температуре 400°С (H_c уменьшается в 4 раза). Без предварительного отжига при температуре 400°С термообработка при температуре 540°С в течение 5 min не приводит к существенному снижению коэрцитивной силы.

Аналогичные результаты получены и для нанокристаллического сплава Fe_{73.5}Cu₁Nb₃Si_{13.5}B₉.

Структурные исследования показали, что влияние предварительного низкотемпературного отжига на процессы последующей нанокристаллизации в сплавах связано с уменьшением внутренних напряжений в сплаве, а также с расслоением аморфной матрицы (рис. 2). На рис. 2, а представлено светлопольное изображение структуры аморфного состояния исходного сплава до отжига. Виден однородный фон, характерный для аморфных сплавов, а на электронограмме (рис. 2, b) широкая кольцевая линия (011) Fe_a. После отжига при 400°C в течение 30 min появился черно-белый контраст пятен (кластеров) (рис. 2, c), отвечающий за твердые растворы матрицы, основы сплава и твердого раствора, из которого будут образовываться далее частицы новых фаз (Fe₂Si, FeB и т.д.). Это отразилось на электронограмме (рис. 2, d). Ширина линии (011) резко уменьшилась и появилось внутреннее гало вблизи первичного пучка, на месте которого при последующем отжиге появляются рефлексы от новых фаз. Образование внутреннего гало указывает на то, что многочисленные зародыши новых

300 nm

Рис. 2. Электронно-микроскопический снимок (светлопольное изображение) структуры (*a*) и картина микродифракции (*b*) исходного сплава $Fe_{73.5}Cu_1Nb_{1.5}Mo_{1.5}Si_{13.5}B_9$ до отжига; *c*, *d* — то же для нанокристаллического сплава $Fe_{73.5}Cu_1Nb_{1.5}Mo_{1.5}Si_{13.5}B_9$ после отжига при температуре 400°C в течение 30 min.

фаз настолько малы (по всей вероятности ≤ 1 nm), что они не могут давать самостоятельные рефлексы. Указанное появление многочисленных кластеров новой фазы на светлопольном изображении структуры (рис. 2, *a*) и образование внутреннего гало вблизи первичного пятна на картине микродифракции (рис. 2, *b*) способствуют ускорению формирования нанокристаллической структуры в сплаве и, как следствие, ведут к улучшению магнитных характеристик.

В таблице представлена зависимость H_c нанокристаллического образца сплава Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉, измеренного в статическом и динамическом режимах перемагничивания, от времени выдержки при нанокристаллизующем отжиге с предварительным низкотемпературным отжигом при температуре 400°C. Из таблицы видно, что отжиг при температуре 540°C в интервале времени от 5 min до 1.5 h в статическом режиме перемагничивания приводит к минимальным значениям H_c . Однако, динамические свойства сплава после нанокристаллизации при температуре 540°C в течение 5 min не являются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптимальными по сравнению с отжигом при температуре 540°C в течение 5 min не мвляются оптима в техе в оптима.

Зависимость H_c (A/m) от времени выдержки (t) при отжиге 540°C (c предшествующим низкотемпературным отжигом) в статическом и динамическом режимах перемагничивания. Сплав Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉.

Частота	t				
перемагничивания,	5 min	30 min	1.5 h	4.5 h	6 h
f, kHz	H_c , A/m				
0	0.25	0.25	0.25	0.73	1.4
40	2.4	1.6	1.6	1.75	2.25
80	5.6	3.6	3.6	4.25	4.6

Примечание. Измерения H_c в статическом режиме перемагничивания проводили при $B_m = 1.0$ Т, в динамическом режиме перемагничивания при $B_m = 0.5$ Т.

сталлизация сплава Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ при температуре 540°C в течение 0.5–1.5 h обеспечивает наилучшие и статические, и динамические магнитные свойства. В результате этой обработки нанокристаллический сплав Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ имеет уникальные магнитомягкие свойства: $H_c \leq 0.3$ A/m, $\mu_0 0 = 60\,000$. При увеличении времени выдержки свыше 4.5 h и статические, и динамические магнитные свойства нанокристаллического сплава Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ ухудшаются. Исследование микроструктуры сплава показало, что наблюдаемое ухудшение свойств связано с увеличением размера нанофаз от 7–10 до 25–30 nm.

На рис. З представлены статические петли гистерезиса нанокристаллического сплава Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ после комплексной обработки: отжига при температуре 400°C в течение

Рис. 3. Петли гистерезиса образцов нанокристаллического сплава $Fe_{73.5}Cu_1Nb_{1.5}Mo_{1.5}Si_{13.5}B_9$ после разных ТМО: *a* — ТМО в переменном поле (f = 50 Hz), *b* — ТМО в переменном поле (f = 80 kHz), *c* — ТМО в постоянном магнитном поле.

30 min и последующего отжига при температуре 540°С в течение 30 min в магнитном поле. Видно, что ТМО в магнитном поле, изменяющемся с частотой 80 kHz, приводит к округлым петлям гистерезиса с наиболее низкой H_c. ТМО в постоянном магнитном поле повышает H_c по сравнению с ТМО в переменных (f = 50 Hz и f = 80 kHz)магнитных полях. Наблюдаемое изменение магнитных свойств в образцах объясняется следующим образом. При отжиге образца в переменном магнитном поле $(f = 80 \,\mathrm{kHz})$ магнитная индуцированная анизотропия не возникает, так как при частотах перемагничивания перемагничивание осуществляется выше 50 kHz путем неоднородного вращения намагниченности, и стабилизация доменной структуры не происходит [10]. Поэтому в результате этой обработки петля гистерезиса имеет округлую форму с низкой коэрцитивной силой. ТМО нанокристаллического сплава Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ в постоянном магнитном поле приводит к возникновению одноосной магнитной анизотропии и закреплению доменных границ. Эффект стабилизации доменной структуры, уменьшающий подвижность границ доменов при перемагничивании, негативно сказывается на гистерезисных свойствах. После ТМО в переменном поле (50 Hz) петля гистерезиса менее прямоугольная и с меньшей H_c по сравнению с гистерезисными характеристиками образца после ТМО в постоянном поле. Это связано с разной величиной магнитной одноосной анизотропии, возникающей при ТМО в постоянных и переменных магнитных полях.

Аналогичные результаты получены и для нанокристаллического сплава Fe_{73.5}Cu₁Nb₃Si_{13.5}B₉.

температурно-временная стабильность Изучена магнитных свойств нанокристаллических сплавов Fe_{73.5}Cu₁Nb₃Si_{13.5}B₉ и Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉. Обнаружено, что более высокой температурно-временной стабильностью обладает нанокристаллический сплав Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉. Магнитные свойства, а именно начальная магнитная проницаемость μ_0 коэрцитивная сила H_c нанокристаллического И сплава Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ после испытания при температуре 180°С в течение 60 h в различных средах (как в вакууме, так и на воздухе) практически не изменяются: $\Delta \mu_0 / \mu_0 \le 3\%$, $\Delta H_c/H_c \leq 3\%$. Для нанокристаллического сплава Fe_{73.5}Cu₁Nb₃Si_{13.5}B₉ изменение магнитных свойств $\Delta \mu_0/\mu_0$, $\Delta H_c/H_c$ после испытания при температуре 180°C в течение 60 h в вакууме составляет 7-10%. На рис. 4 приведены зависимости H_c нанокристаллических сплавов Fe_{73.5}Cu₁Nb₃Si_{13.5}B₉ (кривая 1) и Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ (кривая 2) после испытания при температуре 250°С ОТ времени выдержки в вакууме. Видно, что H_c сплава Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ практически не изменяется даже после испытания при достаточно высокой температуре. Рис. 4 подтверждает, что нанокристаллический сплав Fe73.5Cu1Nb1.5Mo1.5Si13.5B9

Рис. 4. Зависимость коэрцитивной силы нанокристаллических сплавов Fe73.5Cu1Nb3Si13.5B9 (1),Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ (2)после испытания при температуре 250°С от времени выдержки.

имеет повышенную термическую стабильность по сравнению с нанокристаллическим сплавом $Fe_{73.5}Cu_1Nb_3Si_{13.5}B_9.$ Были измерены зависимости динамических (при частоте $f = 400 \, \text{Hz}$) магнитных свойств (максимальной *B* и остаточной *b_r* индукций, коэрцитивная сила H_c , а также потерь $P_{0.75/400}$, соответствующих 0.75 Т и частоте 400 Hz) сплава Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ от времени выдержки в вакууме в процессе испытания при температуре 250°С. Было установлено, что значения B = 0.7 Т, $B_r = 0.58 \,\mathrm{T},$ $P_{0.75/400} = 0.3 \,\mathrm{W/kg}$ и $H_c \approx 21 \,\mathrm{A/m}$ остаются постоянными в течение 5h отжига. Проведенные измерения показывают термическую стабильность сплава при температуре эксплуатации 250°C.

микроструктуры Исследование сплава Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ показало (рис. 5, a, b),что повышенная температурно-временная стабильность магнитных свойств обусловлена выделением нанофаз: зерен — основы сплава размером 6-10 nm и образовавшихся частиц фаз, в первую очередь Fe₂Si размером примерно больше 1 nm, а также, возможно, выделений, связанных с бором. На негативе электронограммы сплава после обработки, состоявшей из нагрева при 400°C в течение 30 min с последующим отжигом при 540°C длительностью 5 min (рис. 5, b) очень слабо видны вблизи первичного пятна две кольцевые линии (100) и (011) гексагональной фазы Fe₂Si. К сожалению, на приведенной электронограмме они проявляются слабо. Это указывает на то, что температура второго отжига низка для выделения достаточного количества и размера фазы Fe₂Si, способного образовать яркие линии (100) и (011). Действительно, когда температуру второго отжига повысили до 570°C в

Рис. 5. Электронно-микроскопический снимок структуры (a) и картина микродифракции (b) нанокристаллического сплава Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ после отжига при температуре 400°C в течение 30 min и последующего отжига при температуре 540°C в течение 30 min.

течение 3 min (рис. 5, *c*, *d*), на электронограмме стали достаточно хорошо видны эти линии. Самые сильные по интенсивности линии Fe₂Si совпадают с интенсивной линий (001)Fe_{α}.

Крупные частицы на светлопольном изображении структуры (рис. 5, a, c) относятся, как правило, к зернам основы сплава, а мелкие к зернам новых фаз. Из термодинамики известно, что частицам новых фаз легче всего образовываться на различногоо рода дефектамх структуры, какими прежде всего являются границы зерен, обладающие повышенными искажениями и напряжениями. Вновь возникающая фаза понижает напряжения и служит препятствием для роста матричных (основы сплава) зерен.

Заключение

Обнаружено, что предварительный низкотемпературный (400°С) отжиг при последующей нанокристаллизации значительно улучшает магнитные свойства нанокристаллического сплава Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉.

Изучено влияние условий термомагнитных обработок на магнитные характеристики нанокристаллического сплава Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉. Показано, что, варьируя частоту магнитного поля при TMO, можно получать материал с требуемыми магнитными свойствами.

Показано, что нанокристаллический сплав Fe_{73.5}Cu₁Nb_{1.5}Mo_{1.5}Si_{13.5}B₉ имеет уникальные магнитные свойства ($H_c \leq 0.3$ A/m) и повышенную температурно-временную стабильность магнитных характеристик. Магнитные свойства после испытания при температуре 180°C в течение 60 h практически не изменяются.

Установлено, что повышенная температурновременная стабильность магнитных свойств нанокристаллического сплава $Fe_{73.5}Cu_1Nb_{1.5}Mo_{1.5}Si_{13.5}B_9$ обусловлена выделением в сплаве нанофазы Fe(Nb,Mo)B, которая имеет высокую термическую устойчивость и затрудняет рост основной нанофазы α -Fe-Si.

Сплавы, имеющие высокую магнитную мягкость и повышенную температурно-временную стабильность, могут быть использованы в устройствах, работающих в экстремальных условиях, например, при высоких температурах.

Работа выполнена по программе ОФН РАН (грант № 12-Т—2-1007), а также проекта РФФИ 11-01-00931.

Список литературы

- [1] Yoshizawa Y, Oguma S., Yamauchi K. // J. Appl. Phys. 1988. Vol. 64. N 10. P. 6044–6046.
- [2] Herzer G. // JMMM. 1994. Vol. 133. P. 248-250.
- [3] *Suzuki K., Herzer G.* // Scripta Materialia. 2012. Vol. 67. P. 548–553.
- [4] Okumura H., Laughlin D.E., McHenry M.E. // JMMM. 2003.
 Vol. 267. P. 347–356.
- [5] Лукшина В.А., Дмитриева Н.В., Носкова Н.И. и др. // ФММ. 2002. Т. 93. № 6. С. 41-49.
- [6] McHenry M.E., Willard M.A., Iwanabe H. et al. // Bull. Mater. Sci. 1999. Vol. 22. N 3. P. 495–501.
- [7] Kulik T., Wlazlowska A., Ferenc J., Latuch J. // IEEE Transactions on Magnetics. 2002. Vol. 38. N 5. P. 3075–3077.
- [8] Kowalczyk M., Ferenc J., Kulik T. // J. Electric. Engineering. 2004. Vol. 55. N 10/S. P. 24–27.
- [9] Gercsi Zs., Mazaleyrat F., Varga L.K. // JMMM. 2006. Vol. 302. P. 454–458.
- [10] Conde C.F., Conde A. // Rev. Adv. Mater. Sci. 2008. Vol. 18. P. 565-571.
- [11] Filippov B.N., Potapov A.P., Shulika V.V. // Function. Material. 2012. Vol. 19. N 1. P. 27–32.
- [12] Zhang X.Y., Zhang J.W., Xiao F.R., Liu J.H., Zhang K.J., Zheng Y.Z. // J. Mater. Res. 1998. Vol. 13. N 11. P. 3241–3246.

- [13] Yoshizawa Y., Yamauchi K. // Matter. Sci. Eng. 1991. Vol. A133. P. 176.
- [14] Muller M., Mattern N. // J. Magn. Magn. Mater. 1994. Vol. 136. P. 79.
- [15] Носкова Н.И., Шулика В.В., Лаврентьев А.Г., Потапов А.П., Корзунин Г.С. // ЖТФ. 2005. Т. 75. Вып. 10. С. 61–65.
- [16] Пудов В.И., Драгошанский Ю.Н., Филиппов Б.Н. Потапов А.П., Шулика В.В. // Патент РФ № 2406769. 2010. Бюл. № 35.