09

Характеристики лазерного диода с волоконной брэгговской решеткой с различной длиной световода

© В.С. Жолнеров,¹ А.В. Иванов,² В.Д. Курносов,² К.В. Курносов,² В.И. Романцевич,² Р.В. Чернов²

¹ Российский институт радионавигации и времени,

191124 Санкт-Петербург, Россия

² ОАО Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха,

117342 Москва, Россия

e-mail: webeks@mail.ru

(Поступило в Редакцию 21 февраля 2013 г. В окончательной редакции 19 июля 2013 г.)

Теоретически и экспериментально показано, что с увеличением тока накачки диапазон непрерывного изменения длины волны и мощности излучения лазерного диода с волоконной брэгтовской решеткой увеличивается при уменьшении длины световода. Получено выражение для коэффициента усиления, зависящее от плотности носителей в активной области лазера. Показано удовлетворительное совпадение ватт-амперных и спектральных характеристик, рассчитанных в этих двух случаях.

Введение

В работах [1–4] проведена разработка и исследование характеристик лазерного диода (ЛД) с волоконной брэг-говской решеткой (ВБР), предназначенного для накачки и детектирования эталонного квантового перехода цези-евого стандарта частоты.

Для работы атомно-лучевой трубки (АЛТ) необходимо разработать систему автоматического поддержания частоты (АПЧ) излучения ЛД с ВБР. Чем больше будет диапазон непрерывной перестройки длины волны излучения при изменении тока накачки, тем более надежной будет работа АПЧ.

В настоящей работе исследуются мощностные и спектральные характеристики ЛД с ВБР с различной длиной световода и теплового сопротивления ЛД. Получено упрощенное выражение для коэффициента усиления лазерного диода.

Эксперимент

Схема полупроводникового лазера с брэгговской решеткой представлена на рис. 1.

Рис. 1. Схема полупроводникового лазера с брэгговской решеткой в волоконном световоде: L_1 , n_1 , L_2 , n_2 , L_3 , n_3 , L_B , n_B — длины и показатели преломления полупроводникового лазера, волоконного световода, воздушного зазора и брэгговской решетки, R_1 , R_2 , R_3 , R_B — коэффициенты отражения, r_{λ} — коэффициент отражения на границе волоконный световод-брэгговская решетка.

В работе [4] даны описание конструкции ЛД и последовательность сборки излучателя с ВБР. Для экспериментальных исследований использовались ЛД, выращенные по MOC-гидридной технологии, в системе GaAs/AlGaAs с толщиной активной области 90 Å и длиной резонатора 600 μ m. На рис. 2, *а* представлены экспериментальные зависимости длины волны и мощности излучения от величины тока накачки ЛД при фиксированной температуре контактной пластины с ЛД и фиксированной температуре ВБР при длине световода $L_2 = 7.6$ mm. Для сравнения на рис. 2, *b* представлены зависимости при длине световода $L_2 = 3.5$ mm.

Рис. 2. Экспериментальные зависимости длины волны (1, 3) и мощности излучения (2, 4) от величины тока накачки: a — длина световода $L_2 = 7.6$ mm, $b - L_2 = 3.5$ mm.

Анализ характеристик, представленных на рис. 2, показывает, что укорочение световода приводит к расширению диапазона непрерывного изменения длины волны и мощности излучения при увеличении тока накачки ЛД.

Теоретически проанализируем изменение характеристик ЛД с ВБР при различных длинах световода L_2 и теплового сопротивления ЛД и упростим выражение для коэффициента усиления.

Расчетные соотношения

.

В соответствии с работами [2,4] поле внутри резонатора представим следующим образом:

$$U_{i}(z) = \begin{cases} A_{i} \sin[\beta_{1i}(z+L)], & -L \leq z \leq -(L_{2}+L_{3}), \\ B_{i} \sin(\beta_{3i}z) + C_{i} \cos(\beta_{3i}z), & -(L_{2}+L_{3}) \leq z \leq -L_{2}, \\ D_{i} \sin(\beta_{2i}z) + E_{i} \cos(\beta_{2i}z), & -L_{2} \leq z \leq 0, \\ [R_{i}(z) - S_{i}(z)] \sin[\beta_{0}(z-L_{B})], & 0 \leq z \leq L_{B}, \end{cases}$$

где $\beta_{1i} = 2\pi n_1/\lambda_i$, $\beta_{2i} = 2\pi n_2/\lambda_i$, $\beta_{3i} = 2\pi n_3/\lambda_i$, $\beta_0 = 2\pi n_B/\lambda_B$ — постоянные распространения в соответствующих областях, λ_B — длина волны Брэгга, $L = L_1 + L_2 + L_3$. В (1) автоматически выполняются граничные условия $U_i(-L) = U_i(L_B) = 0$. Коэффициенты A_i , B_i , C_i , D_i , E_i не зависят от z.

Сшивая решения для поля $U_i(z)$ и производной $dU_i(z)/dz$ в точках $z = 0, -L_2, -(L_2 + L_3)$, получаем характеристическое уравнение, определяющее длины волн излучения, которое может распространяться в системе, показанной на рис. 1:

$$a_{1i}d_{2i} + a_{2i}d_{1i} - f_i(b_{1i}d_{2i} + d_{1i}b_{2i}) = 0.$$
(2)

При проведении расчетов входящие в (2) коэффициенты заимствованы из работ [2,4].

Коэффициент отражения $r(\lambda)$ на границе волоконный световод–брэгговская решетка рассчитывался по формуле (4) работы [4]. Коэффициенты отражения (рис. 1) равны $R_1 = 0.3, R_2 = 0.04, R_3 = 0.005, R_B = 0.04$. Показатели преломления $n_1(T_{\text{LD}}), n_2(\lambda), n_B(\lambda)$ рассчитывались по формулам (12)–(14) работы [4], $n_3 = 1$.

Усредненная плотность фотонов в резонаторе ЛД равна

$$S_{1i} = \frac{F_{1i}\beta R_{\rm sp}}{\tau_p^{-1} - \frac{C_0}{n_1}F_{1i}\Gamma_a g_i},$$
(3)

где c_0 — скорость света в вакууме, Γ_a — коэффициент оптического ограничения, β — коэффициент, учитывающий вклад спонтанного излучения в генерирующую моду.

Время жизни фотонов в резонаторе ЛД с ВБР определяется как

$$\tau_{p} = c_{0} \left[\frac{1}{n_{1}} F_{1i} (\alpha_{1\Sigma} - \Gamma_{a} g_{i}) + \frac{1}{n_{2}} F_{2i} \alpha_{2\Sigma} + \frac{1}{n_{3}} F_{3i} \alpha_{3\Sigma} + \frac{1}{n_{B}} F_{B} \alpha_{B\Sigma} \right]^{-1}.$$
 (4)

Коэффициенты F_i , входящие в (4), а также оптические потери α_i определяются формулами (18), (20) работы [2].

Коэффициент усиления в соответствии с работой [2] рассчитывался с использованием модели без выполнения правила отбора по волновому вектору:

$$g_{i}(h\nu) = G_{0} \sum_{i} \sum_{n,k} \left[m_{hi} \ln \left(\frac{1 + \exp\left(\frac{F_{c} - h\nu - E_{vni}}{kT}\right)}{1 + \exp\left(\frac{F_{c} - E_{cni}}{kT}\right)} \right. \\ \left. \times \frac{1 + \exp\left(\frac{F_{v} + h\nu - E_{cki}}{kT}\right)}{1 + \exp\left(\frac{F_{v} - E_{vki}}{kT}\right)} \right) \right], \qquad (5)$$

где

$$G_{0} = -\frac{\pi e^{2}\hbar}{m_{0}^{2}\varepsilon_{0}N_{a}chv} \frac{m_{c}kT}{(\pi\hbar^{2}L_{a})^{2}} 4\pi a_{0}^{2}L_{a}|M|^{2},$$

hv — энергия фотона, остальные величины определены в работе [2].

Скорость спонтанных переходов можно выразить через коэффициент усиления с помощью выражения

$$r_{\rm sp}(h\nu) = \frac{8\pi (N_a h\nu)^2}{h^3 c^2 \left(\exp\left(\frac{h\nu - (F_c - F_\nu)}{kT}\right) - 1\right)} \left(-g_i(h\nu)\right).$$
(6)

Суммарная скорость спонтанной рекомбинации определяется как

$$R_{\rm sp} = \int r_{\rm sp}(h\nu) dh\nu, \qquad (7)$$

где нижний предел интегрирования в (7) берется равным $(E_{ga} + E_{c1} + E_{v1h}), E_{c1}, E_{v1h}$ — уровни квантования в зоне проводимости и валентной зоне, верхний предел интегрирования ограничивается высотой потенциальных барьеров в квантовой яме.

Плотность электронов в активной области лазера выражается как

$$n_a(F_c) = \rho_c kT \sum_n \ln\left(\frac{1 + \exp\left(\frac{F_c - E_{ca} - E_{cn}}{kT}\right)}{1 + \exp\left(\frac{F_c - E_{cb}}{kT}\right)}\right).$$
(8)

Плотности дырок в активной области ЛД и волноведущих слоях определяются формулами (27), (28), а уравнение электрической нейтральности — формулой (29) работы [2].

Журнал технической физики, 2014, том 84, вып. 3

Оптическая мощность на выходе резонатора ЛД с коэффициентом отражения *R*₁ равна

$$P_1 = h\nu \, \frac{c_0}{n_{\rm lgr}} A_c (1 - R_1) \sum_i S_{1i}, \qquad (9)$$

где A_c — площадь поперечного сечения активной области лазера. Оптическая мощность на выходе объектива излучателя принимается равной $P = 0.8P_1$.

Ток накачки излучателя

$$I = I_{\rm th} + qV_a \, \frac{c_0}{n_{\rm 1gr}} \sum_i \Gamma_a g_i S_{1i},\tag{10}$$

где V_a — объем активной области ЛД. Величина порогового тока $I_{\rm th}$ включает в себя излучательную и безызлучательную скорости рекомбинации носителей

$$I_{\rm th} = qV_a(R_{\rm sp} + An_a),\tag{11}$$

где *А* — коэффициент безызлучательной рекомбинации, *n_a* — плотность носителей в активной области ЛД.

Мощностные и спектральные характеристики в зависимости от тока накачки рассчитывались с учетом формулы [4]

$$\Delta T_{\rm LD} = R_T \left(U_{pn} I + I^2 R_g - 2P_1 \right), \tag{12}$$

где R_T — тепловое сопротивление ЛД, U_{pn} — напряжение на p-n-переходе, R_g — динамическое сопротивление ЛД. Температура активной области ЛД равна $T = T_0 + \Delta T_{\rm LD}, T_0$ — температура окружающей среды.

Расчет характеристик излучателя

Длина волны, мощность излучения и рабочий ток определялись из самосогласованного решения характеристического уравнения (2) и формул (3)–(11) соответственно.

Коэффициенты, необходимые для проведения расчетов, заимствованы из работ [2,4].

На рис. 3, *а* и 4, *а* представлены результаты расчета мощностных и спектральных характеристик ЛД в зависимости от тока накачки для различных длин световода. На рис. 3, $a - L_2 = 7.6$ mm, $R_T = 60$ K/W, на рис. 4, $a - L_2 = 3.5$ mm, $R_T = 40$ K/W.

Сравнивая эти характеристики с экспериментальными зависимостями, изображенными на рис. 2, видим удовлетворительное совпадение.

На рис. 5, *a*, *b* представлены результаты расчета мощностных и спектральных характеристик ЛД в зависимости от тока накачки для длины световода $L_2 = 1.5 \text{ mm}$ и различных величин теплового сопротивления $R_T = 40 \text{ K/W}$ и $R_T = 30 \text{ K/W}$.

Сравнивая характеристики, представленные на рис. 3, a, 4, a и 5, a, b, видим, что диапазон непрерывной перестройки длины волны и мощности излучения увеличивается при уменьшении длины световода и величины теплового сопротивления R_T .

Рис. 3. Зависимости от тока накачки ЛД, рассчитанные с учетом коэффициента усиления (5) и скорости спонтанной рекомбинации (7) для случая $L_2 = 7.6$ mm, $R_T = 60$ K/W: a — спектральная (1), ватт-амперная (2) характеристики, b — максимум коэффициента усиления (3), плотность носителей (4), квазиуровень Ферми (5). Кривыми, выделенными точками, представлены спектральная (1) и ватт-амперная (2) характеристики, рассчитанные с учетом коэффициента усиления (13) и скорости спонтанной рекомбинации (15).

Для исследования амплитудно-частотных и шумовых характеристик ЛД с ВБР необходимо упростить выражения для коэффициента усиления (5) и скорости

Рис. 4. Зависимости от тока накачки ЛД, аналогичные рис. 3, рассчитанные для случая $L_2 = 3.5$ mm, $R_T = 40$ K/W.

Рис. 5. Зависимости от тока накачки ЛД, рассчитанные с учетом коэффициента усиления (5) и скорости спонтанной рекомбинации (7) для случая $L_2 = 1.5$ mm: $a - R_T = 40$ K/W и $b - R_T = 30$ K/W: спектральные (1, 3), ватт-амперные (2, 4) характеристики, c — максимум коэффициента усиления (5), плотность носителей (6), квазиуровень Ферми (7). Кривыми, выделенными точками, представлены спектральные (1, 3) и ватт-амперные (2, 4) характеристики, рассчитанные с учетом коэффициента усиления (13) и скорости спонтанной рекомбинации (15).

спонтанной рекомбинации (6), (7). С этой целью на рис. 3, b, 4, b и 5, c представлены зависимости от тока накачки максимума коэффициента усиления (кривые 3 на рис. 3, b и 4, b и кривая 5 на рис. 5, c), плотности носителей в активной области ЛД n_a (кривые 4 на рис. 3, b и 4, b и кривая 6 на рис. 5, c), квазиуровня Ферми F_c (кривые 5 на рис. 3, b и 4, b и кривая 7 на рис. 5, c), рассчитанные по формулам (5), (8).

Анализ этих характеристик показывает, что все они претерпевают разрывы, коррелирующие с разрывами на мощностной и спектральной характеристиках, а максимум коэффициента усиления коррелирует с величиной плотности носителей, поэтому можно использовать линейную зависимость максимума коэффициента усиления от плотности носителей. С этой целью проводился расчет по формуле (5) максимума коэффициента усиления, строилась зависимость максимума коэффициента усиления от плотности носителей, которая аппроксимировалась прямой линией, что позволило определить величину dg/dn_a и $n_{a0}(I)$. Спектральная зависимость коэффициента усиления аппроксимировалась параболой. С учетом сказанного выше коэффициент усиления примем в виде:

где

$$dn_a$$

(13)

$$D_i = 1 - \left[\frac{2(E_i - E_g)}{\Delta E_g}\right]^2, \quad E_i = \frac{1.24}{\lambda_i},$$

 $g_i = \frac{dg}{dg} (n_a D_i - n_{a0}(I)),$

 λ_i — длина волны излучения *i*-моды в микрометрах, ΔE_g — ширина спектра коэффициента усиления, $n_{a0}(I)$ — плотность носителей, при которой коэффициент усиления равен нулю, $n_{a0}(I) = a + b I$, $a = 2.17 \cdot 10^{18} \,\mathrm{cm}^{-3}$, $b = -1.67 \cdot 10^{16} \,\mathrm{cm}^{-3}$ /mA.

Для величины *E*_g получено следующее выражение:

$$E_g = E_0 - 5.4 \cdot 10^{-4} \frac{T^2}{204 + T} - 2k_g n_a^{1/3}.$$
 (14)

Выражение (14) по форме совпадает с выражением (25) работы [2]. Однако $E_0 = 1.63 \text{ eV}$ с учетом уровней квантования в валентной зоне и зоне проводимости, коэффициент два в последнем члене учитывает равенство $n_a = p_a$.

Суммарная скорость спонтанной рекомбинации (7) заменена на

$$R_{\rm sp} = B n_a^2, \tag{15}$$

где В считается постоянной величиной.

На рис. 3, a, 4, a и 5, a, b кривыми, выделенными точками, представлены характеристики, полученные путем самосогласованного решения уравнений (2), (3), (13)–(15). Видно удовлетворительное совпадение кривых.

Обсуждение полученных результатов

1. Анализ кривых, изображенных на рис. 3–5, показывает, что характеристики терпят разрывы при увеличении тока накачки, коррелирующие с моментами переключения излучения с одной длины волны на другую.

2. Расчеты показывают, что при уменьшении длины световода и теплового сопротивления ЛД увеличивается диапазон непрерывной перестройки длины волны и мощности излучения.

3. Уменьшая величину теплового сопротивления ЛД до $R_T = 30$ K/W для $L_2 = 1.5$ mm (рис. 5, *b*), можно получить диапазон непрерывной перестройки длины волны и мощности излучения от 30 до 70 mA.

4. Упрощенные выражения для коэффициента усиления (13) и скорости спонтанной рекомбинации носителей (15) позволяют получить удовлетворительное совпадение результатов расчета ватт-амперных и спектральных характеристик с результатами расчета, проведенными с учетом формул (5)-(7).

5. При уменьшении длины резонатора должна увеличиваться ширина линии генерации.

Заключение

Уменьшение длины световода ЛД с ВБР и теплового сопротивления ЛД позволяет увеличить диапазон непрерывной перестройки длины волны и мощности излучения. Упрощенное выражение для коэффициента усиления (13) и скорости спонтанной рекомбинации носителей (15) позволяет получить удовлетворительное совпадение характеристик ЛД с ВБР, рассчитанных с учетом формул (5)-(7).

Список литературы

- Журавлева О.В., Иванов А.В., Леонович А.И., Курносов В.Д., Курносов К.В., Чернов Р.В., Шишков В.В., Плешанов С.А. // Квант. электрон. 2006. Т. 36. Вып. 8. С. 741–744.
- [2] Журавлева О.В., Иванов А.В., Курносов В.Д., Курносов К.В., Мустафин И.Р., Симаков В.А., Чернов Р.В., Плешанов С.А. // Квант. электрон. 2008. Т. 38. Вып. 4. С. 319–324.
- [3] Иванов А.В., Курносов В.Д., Курносов К.В., Романцевич В.И., Чернов Р.В., Мармалюк А.А., Волков Н.А., Жолнеров В.С. // Квант. электрон. 2011. Т. 41. Вып. 8. С. 692–696.
- Жолнеров В.С., Иванов А.В., Курносов В.Д., Курносов К.В., Лобинцов А.В., Романцевич В.И., Чернов Р.В. // ЖТФ. 2012.
 Т. 82. Вып. 6. С. 63–68.