03

Ударная волна в поле течения источника и вихреисточника в области энергоподвода при тепловом кризисе

© А.Н. Кучеров

Центральный аэрогидродинамический институт им. проф. Н.Е.Жуковского, 140180 Жуковский, Московская область, Россия e-mail: ank@aerocentr.msk.su, ank19512006@rambler.ru

(Поступило в Редакцию 31 января 2013 г.)

В рамках модели совершенного газа с постоянной теплоемкостью рассмотрен тепловой кризис вихреисточника, истекающего первоначально в режиме I, в разреженное пространство, в вакуум, с переходом сверхзвукового течения в дозвуковое в скачке уплотнения (в ударной волне) и с окончательным торможением в режиме II, в затопленное пространство. Скачок может быть расположен как внутри области энергоподвода, так и вне зоны энерговыделения в зависимости от заданного полного давления на бесконечности. В отсутствие циркуляции цилиндрический источник сопоставлен со сферическим источником. Представлены зависимости энергетических параметров и температуры, а также полного давления и плотности от координаты расположения скачка. Исследованы зависимости критических характеристик и параметров потока в следе за зоной от координаты расположения зоны теплоподвода, от протяженности последней, от циркуляции газа в цилиндрическом вихреисточнике.

Введение

Ударные волны, скачки, разрывы являются важными явлениями в сверхзвуковых течениях [1–7]. В источнике, сферическом или цилиндрическом, и в вихреисточнике [8–10] ударные волны практически не исследованы, хотя в отдельных случаях рассматривались в упомянутых или в очень близких ситуациях [2,5,11,12]. В условиях теплового кризиса этот вопрос не рассматривался. В случае истечения в разреженное пространство (в вакуум, режим I) или из разреженного пространство (в вакуум, режим I) или из разреженного пространства (режим IV) [13,14] поток газа во всем поле стационарного течения является сверхзвуковым, появляется еще одна возможность управления переходом через скорость звука, кроме упомянутых ранее [15,16] спиральных течений типа вихреисточник с теплоподводом вблизи критических ситуаций, а именно в ударной волне.

Напомним, что в случае источника (стока) существуют следующие четыре варианта, различающиеся направлением течения и условиями на бесконечности [13,14]: I — в вакуум, плотность $\rho \rightarrow 0$, давление $p \rightarrow 0$, температура $T \to 0$, скорость $u \to u_{\max}$ при $r \to \infty$; II — в затопленное пространство, $\rho \rightarrow \rho_{0,ph}$, $p \rightarrow p_{0,ph}$, $T \rightarrow T_{0,ph}$, u
ightarrow 0 при $r
ightarrow \infty$ (где $ho_{0,\mathrm{ph}}, \ p_{0,\mathrm{ph}}, \ T_{0,\mathrm{ph}}$ — полные плотность, давление и температура изэнтропически заторможенного газа); III — из затопленного пространства; IV — из области разреженного газа (из вакуума). Возможен сферический и цилиндрический источники, количество вариантов удваивается. В случае цилиндрического источника возможна ненулевая циркуляция, появляется новый параметр подобия, безразмерная циркуляция Γ или расход *m* (или отношение $G = \Gamma/m$). Покажем, что при наличии ударных волн, например, в режиме I, переходящем в режим II, появится еще один параметр подобия, связанный с коэффициентом потери механической энергии в ударной волне $\kappa = p_{02,ph}/p_{01,ph}$, где $p_{01,ph}$, $p_{02,ph}$ — полные давления до и после ударной волны (после фронта ударной волны, в случае более широкого понимания под "ударной волной" системы "фронт и газ, движущийся за фронтом"). Этот параметр подобия задает место положения ударной волны.

Постановка задачи

1 7 7

Выберем в качестве характерных величин давление $p_{0,ph}$, плотность $\rho_{0,ph}$, температуру $T_{0,ph}$ на бесконечности (в случае истечения в затопленное пространство), минимальный размер области течения r_0 и максимальную скорость $u_{0,ph} = (2H_{0,ph})^{1/2}$ в случае истечения в вакуум (где $H_{0,ph} = \gamma p_{0,ph}/(\gamma - 1)\rho_{0,ph}$ — полная энтальпия) [9,10,13–17]. Не вводя специальных обозначений для безразмерных величин, безразмерные уравнения сохранения массы, количества движения, энергии и уравнение состояния газа можно записать:

$$\frac{1}{\rho}\frac{d\rho}{dr} + \frac{1}{u}\frac{du}{dr} + \frac{n}{r} = 0, \qquad (1)$$

$$u\frac{du}{dr} + \frac{\gamma - 1}{2\gamma\rho}\frac{dp}{dr} - \frac{v^2}{r} = 0,$$
 (2)

$$\frac{dv}{dr} = -\frac{v}{r},\tag{3}$$

$$pu \frac{dH}{dr} = \frac{g(r)}{\gamma}, \quad H = T + V^2, \quad V^2 = u^2 + v^2, \\ g(r) = f(r) \times \begin{cases} E \\ Q\rho(r) \end{cases},$$
(4)

$$E = \frac{(\gamma - 1)g_0 r_0}{u_{0, \text{ph}} p_{0, \text{ph}}}, \quad Q = \frac{(\gamma - 1)\rho_{0, \text{ph}} q_0 r_0}{u_{0, \text{ph}} p_{0, \text{ph}}}, \\ T = \frac{p}{\rho}.$$
 (5)

Здесь r — координата, u, v, V — радиальная, азимутальная и полная скорости, n = 1 — для цилиндрического вихреисточника, n = 2 — для сферического источника (при v = 0, u = V), γ — показатель адиабаты. Функция f(r) задана в интервале $[r_1, r_2]$. Интенсивность тепловыделения $g_{\rm ph}(r)$ задана либо на единицу объема $g_0f(r)$, либо на единицу массы $q_0f(r)\rho_{\rm ph}(r)$; g_0 , W/m³ и q_0 , W/kg — характерные значения, приняли $\rho_{0,\rm ph}q_0 = g_0$; Q и E — соответствующие параметры (подобия) энергоподвода. Скорость звука c, радиальное M_r и полное M числа Маха равны

$$c^{2} = \frac{\gamma - 1}{2}T, \quad M_{r}^{2} = \frac{2u^{2}}{(\gamma - 1)T}, \quad M^{2} = \frac{2V^{2}}{(\gamma - 1)T}.$$
 (6)

Уравнения (1), (3), (4) имеют интегралы

$$r^{n}\rho u = m \equiv \frac{m_{0}}{2^{n}\pi r_{0}^{n}\rho_{0,\mathrm{ph}}u_{0,\mathrm{ph}}},$$
 (7)

$$rv = \Gamma \equiv \frac{\Gamma_0}{2\pi u_{0,\rm ph} r_0},\tag{8}$$

$$T + V^{2} \equiv H = \Phi(r) \equiv 1 + \frac{1}{\gamma m} \times \begin{cases} EF(r) \\ QF_{\rho}(r) \end{cases},$$
$$F = \int_{r_{1}}^{r} fr dr, \quad F_{\rho} = \int_{r_{1}}^{r} \rho(r) fr dr. \tag{9}$$

Здесь m_0 — обильность (расход) источника, kg/s, Γ_0 , m²/s есть физическая размерная циркуляция, m и Γ — безразмерные расход и циркуляция. Интеграл от функции f(r) нормирован к единице, это дает для полной мощности источника W_0 простую связь с g_0 , r_0 :

$$2^{n}\pi \int_{r_{1}}^{r_{2}} fr^{n}dr = 1, \quad W_{0} = g_{0}r_{0}^{n+1}2^{n}\pi \int_{r_{1}}^{r_{2}} fr^{n}dr = g_{0}r_{0}^{n+1}.$$
(10)

В отсутствие теплоподвода при g(r) = 0, $\Phi = 1$ уравнение (2) приводится к условию изэнтропичности $p/\rho^{\gamma} = \text{const}$, в итоге уравнения (7)–(9) дают решение

$$r^{2n} = \frac{\frac{m^2}{T^{2/(\gamma-1)}} + \Gamma^2}{1 - T}, \quad \rho = p^{1/\gamma} = T^{1/(\gamma-1)},$$
$$u = \frac{m}{r^n T^{1/(\gamma-1)}}, \quad v = \frac{\Gamma}{r}.$$
(11)

Для сферического источника n = 2 следует взять $\Gamma = 0$. Условие минимума dr/dT = 0 при r = 1 позволяет найти максимальное значение расхода $m_{\text{max}} = m(\Gamma = 0)$ и в общем случае $\Gamma \neq 0$ все газодинамические параметры в минимальном сечении T_m , ρ_m , p_m , u_m , M_m , связь между m и Γ , а также явное выражение для физического минимального радиуса r_0 :

$$m_{\max} = \left(\frac{2}{\gamma+1}\right)^{1/(\gamma-1)} \left(\frac{\gamma-1}{\gamma+1}\right)^{1/2},$$

$$T_m = \frac{2(1-\Gamma^2)}{\gamma+1} = \left(\frac{2m^2}{\gamma-1}\right)^{(\gamma-1)/(\gamma+1)}, \qquad (12)$$

Журнал технической физики, 2014, том 84, вып. 1

$$\rho_m = T_m^{1/(\gamma-1)}, \quad u_m = \frac{m}{\rho_m}, \quad p_m = T_m^{\gamma/(\gamma-1)},$$

$$r_0 = \left(\frac{m_0}{2^n \pi \rho_{0,\text{ph}} u_{0,\text{ph}} m}\right)^{1/n}.$$
(13)

В сечении минимального радиуса радиальное число Маха M_r равно единице, а производные от скорости, плотности, давления стремятся к бесконечности. Один из параметров подобия *m* или Γ (или их комбинация, например, $G = \Gamma/m$) является независимым. Удобно задавать *m* в долях m_{max} , а циркуляцию можно вычислить из (12). Можно также задавать Γ от 0 до 1 и вычислять расход $m(\Gamma)$.

Итак, параметрами подобия являются показатель адиабаты γ (характеризует сорт газа), расход m (или циркуляция Γ), параметр энергоподвода E (или Q). Начальные условия на входе в зону энергоподвода при $r = r_1$ дают еще один параметр подобия r_1 (или число Маха $M_1 = M(r_1)$). Толщина (протяженность) области теплоподвода $d = r_2 - r_1$ также является параметром подобия. Следующий параметр подобия — величина полного давления за системой "ударная волна + зона энергоподвода" связан с местоположением скачка (координатой $r_{\rm sh}$).

Соотношения в ударной волне

В физических переменных уравнения сохранения массы, компонентов импульса и энергии до и после ударной волны можно записать

$$r_{\rm sh}\rho_{1,\rm ph}u_{1,\rm ph} = r_{\rm sh}\rho_{2,\rm ph}u_{2,\rm ph},$$
 (14)

$$p_{1,\rm ph} + \rho_{1,\rm ph} u_{1,\rm ph}^2 = p_{2,\rm ph} + \rho_{2,\rm ph} u_{2,\rm ph}^2, \qquad (15)$$

$$v_{1,\rm ph} = v_{2,\rm ph} = \frac{\Gamma_0}{2\pi r_{\rm sh}},$$
 (16)

$$\frac{\gamma p_{1,\rm ph}}{(\gamma - 1)\rho_{1,\rm ph}} + \frac{u_{1,\rm ph}^2}{2} = \frac{\gamma p_{2,\rm ph}}{(\gamma - 1)\rho_{2,\rm ph}} + \frac{u_{2,\rm ph}^2}{2}.$$
 (17)

Для безразмерных искомых величин $U = u_{2,ph}/u_{1,ph}$, $R = \rho_{2,ph}/\rho_{1,ph}$, $P = p_{2,ph}/p_{1,ph}$ уравнения и решения примут следующий вид:

$$RU = 1, \quad P = 1 + \gamma M_{r1}^{2}(1 - U), \quad U^{2} + bU + c = 0,$$
(18)
$$b = -\frac{2(1 + \gamma M_{r1}^{2})}{(\gamma + 1)M_{r1}^{2}}, \quad c = \frac{1 + \frac{\gamma - 1}{2}M_{r1}^{2}}{\frac{\gamma + 1}{2}M_{r1}^{2}},$$

$$M_{r1}^{2} = \frac{\rho_{1,\text{ph}}u_{1,\text{ph}}^{2}}{\gamma p_{1,\text{ph}}},$$

$$U = \frac{1}{\gamma + 1} \left[\gamma + \frac{1}{M_{r1}^{2}} \pm \left(1 - \frac{1}{M_{r1}^{2}}\right)\right]$$

$$= \begin{cases} 1\\\frac{2 + (\gamma - 1)M_{r1}^{2}}{(\gamma + 1)M_{r1}^{2}}, \quad u_{2,\text{ph}} = Uu_{1,\text{ph}}, \end{cases}$$
(19)

$$R = \frac{(\gamma + 1)M_{r1}^2}{2 + (\gamma - 1)M_{r1}^2}, \quad \rho_{2,\text{ph}} = R\rho_{1,\text{ph}}, \quad (20)$$

$$P = \frac{2\gamma M_{r1}^2}{\gamma + 1} \frac{\gamma - 1}{\gamma + 1}, \quad p_{2,ph} = P p_{1,ph}, \quad (21)$$

$$M_{r2}^{2} = \frac{D_{r1}}{\gamma M_{r1}^{2} - \frac{\gamma - 1}{2}}, \quad D_{r1} = 1 + \frac{\gamma - 1}{2} M_{r1}^{2}.$$
(22)

В скачке сохраняется полная энтальпия H, уменьшаются полное давление $p_{0,ph}$ и полная плотность $\rho_{0,ph}$:

$$\kappa = \frac{p_{02,\text{ph}}}{p_{01,\text{ph}}} = \frac{\rho_{02,\text{ph}}}{\rho_{01,\text{ph}}}$$
$$= \left(\frac{\gamma+1}{2}\right)^{(\gamma+1)/(\gamma-1)} \frac{M_{r1}^{2\gamma/(\gamma-1)}}{D_{r1}^{\gamma/(\gamma-1)} \left[\gamma M_{r1}^2 - \frac{\gamma-1}{2}\right]^{1/(\gamma-1)}}.$$
(23)

Величина κ есть коэффициент потери механической энергии [18]. В общем случае скачок может быть до, внутри или после зоны нагрева, как покажем далее. При теплоподводе растет H, уменьшается полное давление. В замыкающем сечении зоны нагрева газодинамические величины обозначим нижним индексом "3".

Решение за зоной энергоподвода

Учитывая, что в замыкающем сечении все газодинамические величины известны, включая плотность ρ_3 , давление p_3 и температуру T_3 , вместо уравнения сохранения радиальной компоненты импульса используем уравнения изэнтропичности

$$\frac{p}{p_3} = \left(\frac{\rho}{\rho_3}\right)^{\gamma} = \left(\frac{T}{T_3}\right)^{\gamma/(\gamma-1)}.$$
(24)

Интеграл уравнения сохранения энергии (9) с учетом $\Phi(r_2) = \Phi_3$ дает решения

$$r^{2n} = \frac{\frac{m^2}{\rho_3^2(T/T_3)^{2/(\gamma-1)}} + \Gamma^2}{\Phi_3 - T},$$
$$u = \frac{m}{r^n \rho_3(T/T_3)^{1/(\gamma-1)}}, \quad v = \frac{\Gamma}{r}.$$
 (25)

Отсюда полные давление p_{03} и плотность ρ_{03} равны (в долях первоначальных $p_{0,ph}, \rho_{0,ph}$)

$$p_{03} = p_3 \left(\frac{T_{03}}{T_3}\right)^{\gamma/(\gamma-1)} \equiv p_3 \left(\frac{\Phi_3}{T_3}\right)^{\gamma/(\gamma-1)},$$

$$\rho_{03} = \rho_3 \left(\frac{\Phi_3}{T_3}\right)^{1/(\gamma-1)}.$$
(26)

Таким образом, коэффициент изменения полной плотности $\kappa_{\rho 3} = \rho_{03, \rm ph}/\rho_{0, \rm ph}$ в системе "теплоподвод + скачок" отличается от коэффициента потери механической энергии $\kappa_{p 3} = p_{03, \rm ph}/p_{0, \rm ph}$. В ударной волне в отсутствие теплоподвода они совпадают ввиду сохранения полной энтальпии.

Результаты

На рис. 1 приведены распределения радиального числа Маха $M_r(r)$, полной энтальпии H, равной полной подведенной энергии (мощности) $\Phi(r)$ с учетом первоначального потока мощности $\Phi(r_1) = H(r_1) = 1$, а также распределения температуры T(r), давления p(r) и плотности $\rho(r)$. Закон тепловыделения: $f = \text{const} \approx 0.06366$ в интервале [2,3]. Критические значения энергетического параметра составили $E_{cr} \approx 2.7245$ ($r_{\rm sh} = r_1 = 2$, кривая 1), 1.691 $(r_1 + d/2 = 2.5, 2)$, 1.327 $(r_2 = 3, 3)$. Кривые 4 соответствуют истечению в вакуум для последнего варианта, кривые 5 — источник без скачка уплотнения и теплоподвода. В действительности взяли значения энергетического параметра, близкие к критическим, но меньше критических, при которых стационарное течение еще возможно за зоной энергоподвода, поток не запирается на краю $r = r_2$, так как радиальное число Маха $M_r(r_2)$ незначительно меньше единицы.

Радиальное число Маха в режиме I (истечение в вакуум) нарастает до зоны энергоподвода $r_1 = 2$ (кривая 5), убывает в скачке уплотнения и при дальнейшем нагреве (кривая 1 при $p_{0.3} \approx 0.629$, $r_{\rm sh} = r_1$; кривая 2 при $p_{03} \approx 0.496$, $r_{\rm sh} = r_1 + d/2 = 2.5$), затем нарастает почти до единицы в замыкающем сечении зоны энергоподвода $r_2 = 3$. Если $p_{03} \approx 0.419$, возможно уменьшение числа M_r за счет теплоподвода почти до единицы (кривая 3) и только в замыкающем сечении садится очень слабый скачок, переводящий поток в дозвуковой (см. кривую 3 за зоной, совпадающую с кривыми 1 и 2). За зоной энергоподвода число M_r убывает до нуля на большом удалении в затопленном пространстве. В отсутствие противодавления $p|_{r\to\infty} \to 0$ поток разгоняется после зоны энергоподвода (кривая 4) до максимальной скорости $u_{0,ph}$ и неограниченного числа M_r .

Подведенная мощность Φ , совпадающая с полной энтальпией H, монотонно нарастает с ростом координаты в зоне энергоподвода, не испытывая изменений в скачках уплотнения в силу закона сохранения энергии (рис. 1, b). Кривые 3 (в затопленное пространство) и 4 (в вакуум) совпадают. Температура (рис. 1, c) после уменьшения до зоны энергоподвода (кривая 5, истечение в вакуум) нарастает вследствие энергоподвода и в скачках уплотнения ($1, 2, 3, p_{03} \approx 0.629, 0.496,$ 0.419) и только за зоной энергоподвода в отсутствие противодавления $p|_{r\to\infty} \to 0$ убывает до нуля, кривая 4. На рис. 1, d, e приведены распределения давления p(r)и плотности $\rho(r)$ для ситуаций со скачком уплотнения в начале $r_{\rm sh} = r_1$ (кривая I), в середине зоны теплоподвода $r_{\rm sh} = r_1 + d/2 = 2.5$ (2) и в конце $r_{\rm sh} = r_2 = 3$ (3).

Рассмотрели распределения газодинамических величин для цилиндрического источника. Отметим, что для сферического источника с учетом того, что в решении (11) содержится координата в четвертой степени r^4 , изменения всех газодинамических величин M_r , u, T, p, ρ с ростом координаты будут происходить быстрее.

Рис. 1. *а* — цилиндрический источник. Радиальное число Маха $M_r(r)$ при тепловом кризисе и различном расположении скачка: $I - r_{sh} = r_1, 2 - r_{sh} = r_1 + d/2, 3 - r_{sh} = r_2, 4$ — без скачка (истечение в вакуум), 5 — без теплоподвода; *b* — полная энтальпия $H = \Phi(r); c$ — температура T(r); d — давление p(r); e — плотность $\rho(r); f(r) = \text{const} \approx 0.06366, \gamma = 1.4, d = 1, r_1 = 2, \Gamma = 0$ ($m = m_{\text{max}} \approx 0.2588$).

Зависимость критических характеристик от координаты скачка

На рис. 2 в зависимости от координаты скачка $r_{\rm sh}$ показаны критические значения энергетического пара-

метра $E_{\rm cr}$ (кривая *I*), температуры $T_{\rm cr}$ (2) в замыкающем сечении области энерговыделения, полной подведенной энергии (мощности) в этом сечении $\Phi_{\rm cr}$ (3) для цилиндрического (рис. 2, *a*) и сферического (рис. 2, *b*) источников. Отметим более крутой рост величины энер-

Puc. 2. Критические значения энергетического параметра E_{cr} (кривая *I*), температуры T_{cr} (2), подведенной мощности Φ_{cr} (3) в зависимости от координаты скачка r_{sh} : *a* — цилиндрический, *b* — сферический источник; $r_1 = 2$, d = 1, $f \approx 0.06366$, $\gamma = 1.4$, циркуляция $\Gamma = 0$.

Рис. 3. Полные (*a*) давление $p_0(r)$ и (*b*) плотность газа $\rho_0(r)$ в долях начальных физических значений $p_{0,ph}$, $\rho_{0,ph}$: $1 - r_{sh} = r_1 = 2$, $2 - r_{sh} = r_1 + d/2 = 2.5$, $3 - r_{sh} = r_2 = 3$, $4 - r_{sh} = 3.5$, $5 - \kappa(r = r_{sh}) = p_{02,ph}/p_{0,ph}$ без теплоподвода, цилиндрический источник, $f \approx 0.06366$; 1a, 3a, 4a, 5a — сферический источник, $f \approx 0.01256$; d = 1, $r_1 = 2$, $\gamma = 1.4$, $\Gamma = 0$.

гетического параметра $E_{\rm cr}$ при приближении скачка $r_{\rm sh}$ к минимальному сечению $r_{\rm min} = 1$ по сравнению с $T_{\rm cr}$, $\Phi_{\rm cr}$ и различия на порядок критических $E_{\rm cr}$ температур $T_{\rm cr}$ и мощностей $\Phi_{\rm cr}$ в сферическом и в цилиндрическом источниках.

На рис. З в режиме теплового кризиса (в действительности очень близко к нему) построены распределения полных давлений $p_0(r)$ и полных плотностей $\rho_0(r)$ за зоной энерговыделения в долях соответствующих первоначальных физических значений $p_{0,ph}$, $\rho_{0,ph}$ при различных положениях скачка $r_{\rm sh}$.

Падение полного давления в скачке существенно превышает соответствующее падение полного давления вследствие нагрева при $r_{\rm sh} = r_1$, когда скачок расположен на входе в зону нагрева (кривая 1); Δp_0 в скачке заметно меньше при $r_{\rm sh} = r_1 + d/2$ (2) и уменьшается до нуля при $r_{\rm sh} = r_2$ (3). Аналогично меняется падение (уменьшение) полной плотности $\Delta \rho_0$ (рис. 3, b) ($\Delta \rho_0$ максимально при расположении скачка в начальном сечении $r_{\rm sh} = r_1$), но в следе за зоной энерговыделения значение $\rho_{03} = \rho_0(r_2)$ минимально при $r_{\rm sh} = r_1$, в то время как $p_{03} = p_0(r_2)$ максимально в этом варианте. Этот факт объясняет уравнение состояния, связывающее полные величины давления p_0 , плотности ρ_0 и температуры T_0 для заторможенного газа $p_0 = \rho_0 T_0$ (в долях физических начальных полных величин $P_{0,\rm ph}$, $\rho_{0,\rm ph}$, $T_{0,\rm ph}$). Кривая 5 дает изменения полного давления с ростом координаты скачка в отсутствие энергоподвода.

Заметим, что если заданы расход m_0 и полная подведенная мощность W_0 (и тем самым задано увеличение полной энтальпии в зоне энерговыделения $\Delta H_3 = \Delta \Phi_3 = E_{\rm cr}/2\pi\gamma m_0$), достаточно задать на бесконечности полное давление p_{03} , не превышающее первоначально заданное значение p_0 в отсутствие тепловыделения, чтобы найти место расположения ударной волны $r_{\rm sh}$.

Определим полное давление p_{03} в следе за зоной тепловыделения при $r_{\rm sh} = r_1$ как максимальное $p_{03,\max}$ и p_{03} при $r_{\rm sh} = r_2$ как минимальное $p_{03,\min}$ для ситуаций, когда скачок расположен внутри области энерговыделения. Если p_{03} попадает в интервал ($p_{03,\max}$, 1), скачок расположен до зоны энергоподвода. На рис. 2 критические параметры $E_{\rm cr}$, $T_{\rm cr}$, $\Phi_{\rm cr}$ приведены также в области выше участка теплоподвода [r_1, r_2] вплоть до $r_{\rm sh} = 1.3 < r_1 = 2$.

Если на бесконечности задано полное давление p_{03} , которое меньше $p_{03,\min}$, получим ситуацию со скачком уплотнения за зоной энергоподвода $r_{\rm sh} > r_2$. Например, кривая 4 на рис. 3, *а* соответствует $p_{03} \approx 0.3917$ и $r_{\rm sh} = 3.5$. Таким образом, p_{03} есть коэффициент потери механической энергии в скачке при переходе со сверхзвуковой ветви источника на дозвуковую с учетом потери полного давления в зоне нагрева. Величина p_{03} задает координату скачка $r_{\rm sh}$.

Кривые *1a*, *3a*, *4a*, *5a* на рис. *3*, *a* соответствуют сферическому источнику, величины p_{03} внутри зоны вдвое меньше, чем в цилиндрическом источнике. На рис. *3*, *b* приведены, как уже отмечено, распределения полных плотностей ρ_0 в цилиндрическом источнике.

Зависимость критических параметров от расположения зоны теплоподвода

На рис. 4 для цилиндрического источника представлены критические значения энергетического параметра E_{cr,max}, E_{cr,min} (кривые 3, 3а), подведенной мощности $\Phi_{
m cr,max}, \Phi_{
m cr,min} \left(2,2a
ight)$ и значения полного давления за зоной энергоподвода $p_{03,max}$, $p_{03,min}$ (1, 1a) при координате скачка $r_{\rm sh}=r_1$ (нижний индекс "max", 1, 2, 3) и при $r_{\rm sh} = r_2$ (нижний индекс "min", 1a, 2a, 3a). Закон теплоподвода есть $f = \text{const} = 0.1027|_{r1=1.05} - 0.01516|_{r1=10}$, протяженность зоны d = 1, показатель адиабаты $\gamma = 1.4$, циркуляция $\Gamma = 0$. Зона энергоподвода смещается как целое с постепенным уменьшением значений функции интенсивности f, при этом компенсируется увеличение площади кольца, в котором выделяется тепло, интеграл от f остается постоянным. Заметим, что $E_{
m cr,max}$ и $\Phi_{
m cr,max}$ имеют максимумы при $r_1 \approx 1.375$: $(E_{\rm cr,max})_{\rm max} \approx 2.8826, \ (\Phi_{\rm cr,max})_{\rm max} \approx 2.2662, \ {\rm т.e.}$ энергетически наиболее трудно вызвать тепловой кризис на таком расстоянии r₁ вблизи минимального сечения (при d = 1, $p_{03,max} \approx 0.6339$), со скачком уплотнения на входе в зону энергоподвода. Критическая температура в варианте $r_{\rm sh} = r_1$ также имеет максимальное значение при $r_1 \approx 1.375$: $(T_{\rm cr,max})_{\rm max} \approx 1.892$.

При $r_1 > 1.375$ для вариантов $r_{\rm sh} = r_1$ (скачок на фронте зоны энергоподвода) имеем убывание значений $E_{\rm cr,max}$, $\Phi_{\rm cr,max}$ и полного давления за зоной $p_{03,max}$ с ростом r_1 , т.е. по мере удаления от минимального сечения. В вариантах перехода через скорость звука со

Рис. 4. Цилиндрический источник. Зависимости полного давления $p_{03,\max}$, $p_{03,\min}$ (кривые *I*, *Ia*), критической подведенной мощности $\Phi_{cr,\max}$, $\Phi_{cr,\min}$ (*2*, *2*) и критических значений энергетического параметра $E_{cr,\max}$, $E_{cr,\min}$ (*3*, *3a*) от начальной координаты r_1 зоны энергоподвода; кривые *I*, *2*, *3* — индекс "max", $r_{sh} = r_1$; кривые *Ia*, *2a*, *3a* — "min", $r_{sh} = r_2$; d = 1, $\gamma = 1.4$, $\Gamma = 0$.

слабым скачком при $r_{\rm sh} = r_2$ значения $E_{\rm cr,min}$, $\Phi_{\rm cr,min}$ возрастают, а полное давление $p_{03,\min}$ убывает почти с таким же темпом, как и в вариантах $r_{\rm sh} = r_1$ с увеличением r_1 . Поведение температуры $T_{\rm cr,max}(r_1)$ аналогично поведению величин $\Phi_{\rm cr,max}(r_1)$, $E_{\rm cr,max}(r_1)$, а температура $T_{\rm cr,min}(r_1)$ слабо растет, как и $\Phi_{\rm cr,min}(r_1)$, $E_{\rm cr,min}(r_1)$, по мере удаления зоны нагрева от минимального сечения.

Критические значения скорости $u_{cr,max}(r_1)$ очень слабо убывают, а значения $u_{cr,min}(r_1)$ очень слабо возрастают с ростом координаты начала зоны энергоподвода r_1 .

Влияние толщины зоны энергоподвода

Как меняются критические характеристики с изменением толщины (протяженности) зоны теплоподвода *d* на порядок (и более) исследуем в двух вариантах, представленных на рис. 5:

1) фиксируем начало зоны тепловыделения $r_1 = 1.05 = \text{const}$ и увеличиваем ее протяженность от d = 0.1 до d = 10 ($r_2 = 11.05$), рис. 5, *a*, *b*;

2) фиксируем координату замыкающего сечения $r_2 = 11 = \text{const}$ и уменьшаем протяженность зоны от d = 9.95 ($r_1 = 1.05$) до d = 1 ($r_1 = 10$), рис. 5, *c*, *d*.

В первом случае при расположении скачка на входе в зону критические величины — энергетический параметр $E_{cr,max}(d)$, температура $T_{cr,max}(d)$, подведенная мощность $\Phi_{cr,max}(d)$ нарастают при возрастании d с увеличением темпа роста, кривые 1, 2, 3, рис. 5, a. По крайней мере, при d > 5 ввиду увеличения температуры почти на порядок необходимо в конкретных приложениях, а также при исследовании сильных эффектов, таких как тепловой кризис, способных при поправках в несколько процентов изменить качественно картину течения,

Рис. 5. *а* — критические значения энергетического параметра $E_{cr,max}$, $E_{cr,min}$ (кривые *1*, *1a*), температуры $T_{cr,max}$, $T_{cr,min}$ (*2*, *2a*) и подведенной мощности $\Phi_{cr,max}$, $\Phi_{cr,min}$ (*3*, *3a*) в зависимости от толщины зоны нагрева *d* при начальной координате $r_1 = 1.05$ ($r_2 = 1.15 - 11.05$); индекс "max" — $r_{sh} = r_1$, "min" — $r_{sh} = r_2$; *b* — полные давление p_{03} (кривые *1*, *1a*) и плотность ρ_{03} (*2*, *2a*) в долях $p_{0,ph}$ и $\rho_{0,ph}$; *c* — $E_{cr,max}$, $E_{cr,min}$ (кривые *1*, *1a*), $T_{cr,max}$, $T_{cr,min}$ (*2*, *2a*) и $\Phi_{cr,max}$, $\Phi_{cr,min}$ (*3*, *3a*) в зависимости от *d* при $r_2 = 11$ ($r_1 = r_2 - d = 1.05 - 10$); $d - p_{03}$ (кривые *1*, *1a*) и ρ_{03} (*2*, *2a*), *e* — числа Маха $M_r(r)$, d = 2, $r_1 = \text{const} = 1.05$ ($r_2 = r_1 + d = 3.05$): кривая *1* ($r_{sh} = r_1$) и *2* ($r_{sh} = r_2$); $r_2 = \text{const} = 11$ ($r_1 = r_2 - d = 9$): кривая *3* ($r_{sh} = r_1$) и *4* ($r_{sh} = r_2$); кривая *5* — без теплоподвода; $\gamma = 1.4$, $\Gamma = 0$.

Рис. 6. a — вихреисточник. Критические значения энергетического параметра E_{cr} (кривые 1, 1a), температуры T_{cr} (2, 2a), подведенной мощности Φ_{cr} (3, 3a) в зависимости от циркуляции Γ при $r_{sh} = r_1 = 2$, — кривые 1-3 и $r_{sh} = r_2 = 3$, — кривые 1a-3a; b — полное давление p_{03} (кривые 1, 1a) и полная плотность ρ_{03} (2, 2a); d = 1, $\gamma = 1.4$.

учитывать реальные свойства газов, в первую очередь изменение теплоемкости с ростом температуры [19,20].

При расположении слабой ударной волны, переводящей поток в дозвуковое течение, в замыкающем сечении зоны критические значения энергетического параметра $E_{\rm cr,min}(d)$ увеличиваются с ростом d от $E_{\rm cr,min} = 0.231$ до 3, а температура $T_{\rm cr,min}(d)$ и подведенная мощность $\Phi_{\rm cr,min}(d)$ увеличиваются приблизительно в 2 раза, кривые 1a, 2a, 3a, рис. 5, a, причем, темп роста сильно замедляется при $d \approx 5$, т. е. в середине рассматриваемого диапазона.

Сопоставление полных давлений $p_{03,\text{max}}$ и $p_{03,\text{min}}$, а также полных плотностей $\rho_{03,\text{max}}$ и $\rho_{03,\text{min}}$ показало, что при d = 0.1 различия практически отсутствуют, а при d = 10 могут достигать 3.5, причем в случае полной плотности величина $\rho_{03,\text{min}}$ больше соответствующей величины $\rho_{03,\text{max}}$ в 3.5 раза.

Во втором случае ($r_2 = \text{const} = 11$) рост критических значений величин $E_{\text{cr,max}}(d)$, $T_{\text{cr,max}}(d)$, $\Phi_{\text{cr,max}}(d)$ с увеличением d происходит медленнее, чем в первом случае ($r_1 = \text{const} = 1.05$) в интервале до $d \approx 8$. Но далее темп роста резко увеличивается и при $d \approx 10$ все упомянутые критические величины, энергетический параметр $E_{\text{cr,max}}$, температура $T_{\text{cr,max}}$, подведенная мощность $\Phi_{\text{cr,max}}$ в несколько раз больше, чем при $d \approx 8$.

Значения $E_{\rm cr,min}$, $T_{\rm cr,min}$, $\Phi_{\rm cr,min}$, вычисленные при $r_{\rm sh} = r_2$, возрастают более плавно, почти по линейному закону и увеличиваются во всем диапазоне лишь на несколько десятков процентов (рис. 5, *c*).

Полное давление $p_{03,\max}$, вычисленное при $r_{\rm sh} = r_1$, возрастает в несколько раз при увеличении d от единицы до 10. Но значения $p_{03,\min}(d)$, вычисленные при $r_{\rm sh} = r_2$, растут очень слабо, почти не меняются. Полная плотность $\rho_{03,\max}$ убывает приблизительно в 4 раза, а величина $\rho_{03,\min}$ — только на 13% (рис. 5, d).

На рис. 5, е в зависимости от координаты r приведены радиальные числа M_r для двух обсуждавшихся здесь ситуаций при d = 2: 1) $r_1 = 1.05, r_2 = 3.05$, кривые 1, 2; 2) $r_2 = 11$, $r_1 = 9$, кривые 3, 4. За зоной энергоподвода кривые 1, 2 и 3, 4 имеют общее продолжение в следе, так как условия в замыкающем сечении r₂ близки. Критические температуры T_{cr} и подведенные мощности Φ_{cr} при одинаковых толщинах d = 2 и различных координатах замыкающего сечения $r_2 = 3.05$ и 11, согласно данным, приведенным на рис. 5, а и рис. 5, с, различаются слабо. Различие в местоположении $(r_1 = 1.05 \text{ и } 9)$ сказывается существенно на полном давлении p_{03,max}, равном приблизительно 0.629 и 0.134 в 1-м и во 2-м случаях соответственно. Это различие связано с отличием радиальных чисел Маха до ударной волны: $M_{r1} \approx 1.259$ и 3.806 в сечениях $r_{\rm sh} = r_1 = 1.05$ и $r_{\rm sh} = r_1 = 9$ соответственно. Более интенсивный скачок во втором случае приводит к существенно меньшему давлению p_2 за скачком и давлению p_3 в замыкающем сечении зоны энергоподвода по сравнению с первым случаем. В итоге противодавление p_{03,max}, способное вызвать скачок на фронте зоны теплоподвода, почти в 5 раз меньше во втором случае.

Влияние циркуляции

Все вышеизложенное в отношении чисел Маха связано с радиальной компонентой M_r . Именно равенство единице радиальной компоненты числа Маха определяет минимальное сечение и критические ситуации, в которых не может выполниться расход, течение запирается. Примеры приводились в ситуациях с максимальным расходом при $\Gamma = 0$, в которых радиальное число Маха совпадает с полным. Рассмотрим, как влияет циркуляция на тепловой кризис в ситуациях со скачком уплотнения, на критические значения параметров подобия и

на газодинамические параметры. На рис. 6, *а* показаны критические значения энергетического параметра $E_{\rm cr}$, критические температуры $T_{\rm cr}$ и подведенные мощности $\Phi_{\rm cr}$ в зависимости от циркуляции Γ при $r_1 = 2$, d = 1, $\gamma = 1.4$ (азот, кислород, воздух). Значения $E_{\rm cr}$ монотонно убывают с ростом Γ от нуля до максимального значения $\Gamma = 1$, причем как в случае $r_{\rm sh} = r_1$ (кривая I), так и в случае $r_{\rm sh} = r_2$ (кривая Ia).

Критические значения температуры и подведенной мощности в замыкающем сечении зоны энергоподвода монотонно возрастают с увеличением Γ как в случае скачка на входе (кривые 2, 3), так и в варианте скачка на выходе зоны энергоподвода (кривые 2a, 3a). Скорость роста несколько увеличивается при приближении Γ к максимальному значению, равному единице. Напомним, что в случае истечения в затопленное пространство, режим II, при $r_1 = 2$, d = 1 рост величин E_{cr} , Φ_{cr} происходит на несколько порядков уже вблизи $\Gamma \approx 0.7$ [16].

В отношении Q-вариантов заметим, что критические значения $Q_{\rm cr}$ значительно больше, чем $E_{\rm cr}$ и растут с ростом Г. Значения критических $T_{\rm cr}$ и $\Phi_{\rm cr}$ отличаются меньше и также растут с ростом Г.

На рис. 6, *b* представлены изменения полного давления p_{03} и полной плотности ρ_{03} с ростом Г. Значения $p_{03,max}$ и $p_{03,min}$, а также значения $\rho_{03,max}$ и $\rho_{03,min}$ близки, убывают монотонно с ростом Г, причем различия, как и абсолютные значения, уменьшаются до нуля при $\Gamma \rightarrow 1$. Резкий спад начинается при $\Gamma \ge 0.2$, а при $\Gamma \ge 0.8$ названные величины близки к нулю, и спад становится более плавным, постепенным.

Выводы

1. Для варианта "теплоподвод + скачок" ситуация истечения в вакуум, режим I, с последующим после ударной волны истечением в затопленное пространство, режим II, полное давление p_{03} на бесконечности (отнесенное к первоначальному $p_{0,ph}$: $p_{03} = p_{03,ph}/p_{0,ph}$) является дополнительным параметром подобия $\kappa = p_{03}$, характеризующим суммарные потери механической энергии в системе "теплоподвод + ударная волна".

2. Величина p_{03} определяет положение ударной волны до, внутри или после зоны энергоподвода. В сферическом источнике падение полного давления $\Delta p_0 = 1 - p_{03}$ существенно больше, чем в цилиндрическом.

3. В цилиндрическом источнике в варианте со скачком на входе в зону критические значения энергетического параметра E_{cr} , подведенной мощности Φ_{cr} , температуры T_{cr} в замыкающем сечении имеют максимумы при некотором значении координаты начала зоны теплоподвода r_1 . Полное давление p_{03} монотонно убывает с ростом r_1 в обоих вариантах со скачком на входе и на выходе из зоны энергоподвода.

4. Критические значения энергетического параметра $E_{\rm cr}$, температура $T_{\rm cr}$, подведенная мощность $\Phi_{\rm cr}$ нарастают при возрастании d с увеличением темпа роста,

если $r_{\rm sh} = r_1$, причем рост толщины d может идти как от фиксированного $r_1 = \text{const}$ (растяжение вниз по течению), так при фиксированном $r_2 = \text{const}$ (растяжение навстречу потоку). Полное давление p_{03} в 1-м случае убывает, во 2-м случае нарастает с увеличением d.

5. Рост циркуляции в цилидрическом вихреисточнике приводит к уменьшению $E_{\rm cr}$ и полного давления p_{03} . Критические температура $T_{\rm cr}$ и подведенная мощность $\Phi_{\rm cr}$ нарастают, но не так резко, как в режиме II, в затопленное пространство.

Работа выполнена при поддержке Государственной программы № П-09 Президиума РАН.

Список литературы

- [1] Газовая динамика. М.–Л.: ГОНТИ, 1939. 308 с. (Сб. докладов на конференции по большим скоростям в авиации. Рим, 30 сентября – 6 октября 1935 г.).
- [2] *Курант Р., Фридрихс К.* Сверхзвуковые течения и ударные волны. М.: ИЛ, 1950. 426 с.
- [3] Ландау Л.Д., Лифшиц Е.М. Гидродинамика (Курс теоретической физики. Т. 6). М.: Наука, 1986. 736 с.
- [4] Черный Г.Г. Газовая динамика. М.: Наука, 1988. 424 с.
- [5] Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966. 686 с.
- [6] Ступоченко Е.В., Лосев С.А., Осипов А.И. Релаксационные процессы в ударных волнах. М.: Наука, 1965. 484 с.
- [7] Уизем Дж. Линейные и нелинейные волны. М.: Мир, 1977. 622 с.
- [8] Чаплыгин С.А. О газовых струях. М.: Университетская типография, 1902. 121 с.
- [9] Фабрикант Н.Я. Аэродинамика. Ч. І. М.: ГИТТЛ, 1949.
 624 с.; Аэродинамика. Общий курс. М.: Наука, 1964. 814 с.
- [10] Мизес Р. Математическая теория течений сжимаемой жидкости. М.: ИЛ, 1961. 588 с.; (Mises R. Mathematical Theory of Compressible Fluid Flow. N Y: Academic Press INC Publishers, 1958).
- [11] Проснак В. Ударная волна в двумерном радиальном газовом потоке. В сб. пер. "Механика", М.: Изд-во иностр. лит., 1957. № 6. С. 25–46.
- [12] Седов Л.И. Методы подобия и размерности в механике. М.: Наука, 1987. 500 с.
- [13] Кучеров А.Н. // ИФЖ. 2010. Т. 83. № 5. С. 873-877.
- [14] Кучеров А.Н. // ЖТФ. 2011. Т. 81. Вып. 7. С. 35-42.
- [15] Kogan M.N., Kucherov A.N. Thermal choking of cylindrical or spherical mass source. The 9-th International Workshop on Magneto-Plasma Aerodynamics. M.: April 13–15, 2010. Proceedings. P. 59–69.
- [16] *Кучеров А.Н.* // Ученые записки ЦАГИ. 2012. Т. 43. № 2. С. 31–42.
- [17] *Кучеров А.Н.* // Ученые записки ЦАГИ. 1983. Т. 14. № 4. С. 47–57.
- [18] Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1973. 848 с.
- [19] Кучеров А.Н. // ЖТФ. 2012. Т. 82. Вып. 11. С. 15-21.
- [20] Кучеров А.Н. // Инженерно-физический журн. 2012. Т. 85. № 5. С. 1044–1055.