13

Сегрегации титана на поверхности стали 12Х18Н10Т под воздействием электронного пучка

© С.В. Плотников,¹ Н.К. Ердыбаева,¹ А.А. Колодешников,² В.А. Зуев,² В.И. Игнашев,² Т.Р. Туленбергенов,² И.А. Соколов²

 ¹ Восточно-Казахстанский государственный технический университет, 070010 Усть-Каменогорск, Казахстан
 ² Институт атомной энергии национального ядерного центра РК, 071100 Курчатов, Казахстан e-mail: plotsv@ektu.kz

(Поступило в Редакцию 21 февраля 2013 г.)

Методами электронной сканирующей микроскопии исследованы структурно-фазовые изменения поверхности аустенитной стали 12Х18Н10Т, подвергнутой воздействию непрерывного электронного пучка. Установлено, что рассматриваемое взаимодействие приводит к заметному выделению титана на поверхности образца. Приведен расчет распределения температуры в результате теплового воздействия электронов. Приведены результаты измерения распределения компонентов сплава по глубине образца.

Введение

Проблема управляемого термоядерного синтеза одна из важнейших задач, стоящих перед человечеством. В настоящее время, когда ведется сооружение Международного термоядерного экспериментального реактора ИТЭР (ITER) и осуществляется развитие концепции последующего демонстрационного энергетического реактора ДЕМО (DEMO), все более актуальными становятся исследования материалов деталей, контактирующих с плазмой, направленные на повышение безопасности и экономической эффективности реактора.

Основной целью создания токамака КТМ является проведение экспериментальных исследований материалов и конструкторских решений для защиты первой стенки, приемных диверторных пластин и других узлов дивертора на режимах работ, близких к ИТЭР, а также выполнение исследований по отработке методов снижения нагрузки на приемные пластины, различных способов тепло- и энергоотвода, способов быстрой откачки диверторного объема и разработка методов предотвращения внерегламентного выхода внутрикамерных элементов из строя [1].

В поддержку программы исследований на казахстанском материаловедческом токамаке КТМ был создан стенд имитационных испытаний (СИИ) с плазменно-пучковой установкой, ориентированный на проведение исследований материалов ТЯР и испытания оборудования КТМ. СИИ обеспечивает два рабочих режима, необходимых для выполнения различных имитационных задач — электронный и плазменно-пучковый.

Электронный пучок может производиться с регулируемой в широких пределах полной (до 30 kW) и удельной (до 3 MW/cm²) мощностей как в стационарном, так и модулированном режимах. В пределе высокой мощности электронного пучка плавятся и испаряются все материалы. В настоящее время на имитационном стенде проводятся исследования степени деградации поверхности образцов конструкционных материалов под влиянием воздействия электронного пучка и плазменного разряда.

В связи с этим целью настоящей работы является исследование структурно-фазовых изменений поверхности при воздействии непрерывного электронного пучка на конструкционную нержавеющую сталь аустенитного класса 12X18H10T. Химический состав стали представлен в табл. 1.

Эксперимент

Эксперименты по облучению образцов проводились на имитационном стенде КТМ, в котором электронный пучок инжектируется вдоль магнитного поля в дрейфовую камеру взаимодействия, где расположено устройство с мишенью для исследуемых образцов материалов. Схема работы имитационной установки показана на рис. 1.

Рис. 1. Схема облучения образцов электронным пучком в плазменно-пучковой установке имитационного стенда: 1 - электронная пушка, 2 - камера плазменно-пучковогоразряда, 3,5 - диафрагма, 4 - электромагнитные катушки,<math>6 -камера взаимодействия, 7 - электронный пучок, 8 образец, 9 - графитовая мишень, 10 - узел крепления мишени.

Элемент	С	Si	Mn	Ni	S	Р	Cr	Cu	Ti	Fe
Содержание, %	До 0.12	До 0.8	До 2	9-11	До 0.02	До 0.035	17-19	До 0.3	Менее 1	Остальное

Таблица 1. Химический состав стали 12Х18Н10Т (в % mass.)

В электронном режиме (без газонапуска, на предельно низком остаточном давлении) на мишень в продольном магнитном поле транспортируется компенсированный электронный пучок. С его помощью можно изменять в широких пределах как общую мощность (до 30 kW), так и плотность теплового потока на поверхность испытываемых материалов. Это обеспечивает очень широкий комплекс теплофизических экспериментов, а также возможность проведения отжига образцов и исследования их термодесорбции. В режиме плазменно-пучкового разряда при напуске рабочего газа в камеру взаимодействия и откачке через секцию электронной пушки возможно достаточно широкое варьирование параметров генерируемой плазмы. Общий ионный выход на мишень в режиме ППР может достигать 1 А при мощности первичного электронного пучка порядка 2 kW.

Основу стенда составляет прогреваемая камера взаимодействия с возможностью получения высокого предельного вакуума порядка 10⁻⁸ Тогг. Она снабжена фланцами для монтажа вакуумных агрегатов, плазменного генератора, загрузочного мишенного устройства, диагностических приборов. Генерация и транспортировка электронного пучка осуществляется в продольном магнитном поле с изменяемой короткими цилиндрическими катушками топологией.

Стенд состоит из следующих функциональных узлов: электронной пушки с катодным узлом, камеры плазменно-пучкового разряда, камеры взаимодействия (мишенной камеры), системы откачки и газонапуска, системы питания электронной пушки, электромагнитной системы, системы охлаждения, а также систем диагностики и ИИС (информационно-измерительной системы). В установке предусмотрено использование охлаждаемого мишенного узла и мишенного узла с загрузкой образцов и их транспортировкой в камеру анализа с помощью транспортной системы. Основными элементами стенда, определяющими его размеры и конфигурацию, являются электронная пушка с присоединенной к ней цилиндрической камерой для реализации пучково-плазменного разряда с внутренним диаметром ~ 68 mm и длиной около 800 mm и цилиндрическая камера взаимодействия с внутренним диаметром 250 mm и высотой 400 mm. Конструкция мишенного устройства позволяет устанавливать исследуемые образцы металлов диаметром до 90 mm. Камера взаимодействия и электронная пушка имеют независимые системы откачки на основе двух турбомолекулярных насосов со скоростью откачки 521 и 2621/ѕ и соответствующего набора клапанов. Между электронной пушкой и камерой ППР, а также камерой ППР и камерой взаимодействия установлены съем-

Рис. 2. Общий вид плазменно-пучковой установки.

ные диафрагмы, предназначенные для формирования профиля электронного пучка. Конфигурация и основные элементы плазменно-пучковой установки показаны на рис. 2.

Установка обеспечивает получение электронного потока со следующими параметрами:

— диаметр потока до 30 mm,

— напряженность магнитного поля на оси генератора до 0.1 Т,

— напряженность магнитного поля в районе электронной пушки $\sim 0.2 \, \text{T}$,

— величина тока в электронном потоке $\sim 1 \, \text{A}$,

— электронная температура до 30 eV.

Контроль среды в полости камеры взаимодействия осуществляется при помощи квадрупольного масс-спектрометра CIS-100.

Образец крепился с помощью специальных пластин к неохлаждаемой графитовой мишени. Для контроля температуры образца на тыльной стороне была установлена термопара типа ХА. Обращенная к пучку поверхность образца была отполирована механическим способом.

Результаты экспериментов

В табл. 2 приведены параметры работы установки при испытании образца.

При облучении образца максимальная реализованная мощность электронного пучка составляла 75 W при мощности нагрева катодно-подогреваемого узла (КПУ) 130 W. Максимальное значение температуры

	КПУ		Элек	гронный пу	чок	Длительность	Температура
напряжение, U.V	ток, 1. mA	мощность, N. W	напряжение, U. kV	ток, 1. mA	мощность, W. W	воздействия, $ au$ min	мишени,
0,1	1,1111	,	0,87	1,1111	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1, 0
650	200	130	1	8	8	3	120
650	200	130	1.5	14	21	3	200
650	200	130	1.5	14	21	3	250
650	200	130	2	17	34	2	530
650	200	130	2	18	36	2	590
650	200	130	2.2	18	39.6	2	600
650	200	130	2.5	19	47.5	2	700
650	200	130	2.7	20	54	2	730
650	200	130	3	23	69	30	840
650	200	130	3	24	72	2	900
650	200	130	3	25	75	2	920

Таблица 2. Параметры установки при мощности нагрева катодно-подогревательного узла 130 W

Рис. 3. Состояние поверхности образца после облучения.

Рис. 4. Микрофотография центральной зоны ×1500.

образца, зарегистрированное установленной термопарой, достигло 920°С.

Внешний вид образца после облучения приведен на рис. 3.

Видно, что на образце стали после воздействия электронного пучка образовались цвета побежалости и зафиксировалась заметная деградация поверхностного слоя центрального пятна.

Исследования структурно-фазовых изменений поверхности образца после воздействия непрерывного электронного пучка проводились на растровом электронном микроскопе JEOL JSM-6390LV с приставкой энергодисперсионного микроанализа INSA Епегду. При 30-кратном увеличении ($500 \,\mu$ m) отчетливо различаются четыре зоны термического влияния. В центральной зоне (рис. 4) хорошо видны пластинки выделений титана. В табл. 3 приведены данные анализа элементного состава пластинок титана и областей без выделений. Эксперимент показывает, что в области действия пучка электронов происходит образование островковых тонких пленок Ti.

На границе 2-й и 3-й зон от центральной зоны также имеет место сегрегация Ті из основного сплава, но в виде кубических выделений на поверхности, о чем свидетельствуют результаты картирования этой зоны (рис. 5). В табл. 4 представлен элементный анализ областей, указанных на рис. 5.

В 3-й зоне происходит перекристаллизация, расчетная температура около 1300°С. Также встречаются кристаллы Ті, но гораздо реже и меньше размерами, чем на границе 2-й и 3-й зон. В 4-й зоне заметно относительно равномерное скопление Ті на поверхности. Температура составляет 1150°С. В 5-й зоне наблюдается оплавление поверхности зерен, размер их немного увеличен. На

Таблица 3. Элементный анализ (в % mass.)

Спектр	Si	Ti	Cr	Fe	Ni	Итог
1		98.49	4.02	1.51	_	100.00
2	2.29	2.13		70.56	21.00	100.00

Таблица 4. Элементный анализ (в % mass.)

Спектр	В стат.	Si	S	Ca	Ti	Cr	Fe	Ni	Итог
1	Да	_	0.29	0.29	95.89	_	2.54	1.00	100.00
2	Да	2.53	—	—	3.14	3.47	62.95	27.91	100.00

Рис. 5. Граница 2-й и 3-й зоны ×900.

образце это белая матовая область, постепенно переходящая в зеркальную поверхность (результат полировки образцов).

Обсуждение результатов

Структурно-фазовые изменения поверхности исследуемого образца — результат теплового воздействия пучка электронов. В связи с этим был произведен расчет распределения температуры.

Если проследить за изменением температурного поля при нагреве сосредоточенным источником тепла (в данном случае — электронным лучом), то легко установить, что в начале его действия область повышенных температур возрастает до определенных размеров. После прекращения действия такого источника (после гашения электронного пучка) охлаждение металла происходит интенсивнее, так как дополнительного ввода тепла нет, а введенное тепло только распространяется в образце [2]. Рассмотрим стационарное состояние. Конечная формула для температуры любой точки тела в любой момент времени в стационарном состоянии будет

$$T(R, x) = (W/(2\pi\lambda R)) \exp[-(v/2a)(x+R)], \quad (1)$$

где W — мощность точечного источника, λ — коэффициент теплопроводности металла, a — коэффициент температуропроводности, v — скорость перемещения точечного источника, R — расстояние от точечного источника.

В частном случае предельное состояние процесса нагрева массивного тела неподвижным непрерывно действующим источником постоянной мощностью W получим, подставив v = 0. Тогда

$$T(R, x) = W/(2\pi\lambda R).$$
(2)

Температура при данной мощности (W) и определенном металле (λ) зависит только от расстояния (R). Зависимость T = f(R) является простой гиперболой. При

заданной мощности температура на данном расстоянии обратно пропорциональна коэффициенту теплопроводности.

На рис. 6 приведен график распределения температуры в стали после прекращения действия пучка электронов. Выделение примеси можно объяснить наличием градиентов точечных дефектов у границ [2]. За счет интенсивного отвода тепла после выключения электронного пучка возникает избыток термодинамических равновесных вакансий. В результате возникает поток вакансий, направленный перпендикулярно поверхности и от места действия пучка. Границы металла являются интенсивными стоками вакансий, поэтому усредненный профиль распределения вакансий у границ меняет свою форму.

Для расчета распределения примеси воспользуемся кинетическим уравнением диффузии в поле градиентов температуры и вакансий

$$\begin{aligned} \frac{\partial C}{\partial t} &= \frac{\partial}{\partial x} \left(-D \frac{\partial C}{\partial x} \right) + \frac{\partial}{\partial y} \left(-D \frac{\partial C}{\partial y} \right) \\ &+ \frac{C(1-C)C_v}{kT^2} (E_A D_A^* - E_B D_B^*) \frac{\partial T}{\partial x} \\ &- C(1-C)(D'_A - D''_B) \frac{\partial C_V}{\partial x} - C(1-C)(D'_A - D''_B) \frac{\partial C_V}{\partial y}, \end{aligned}$$
(3)

где C — концентрация атомов сорта B, $D_A^* = D_{0A} \exp(-E_A/kT)$, $D_B^* = D_{0B} \exp(-E_B/kT)$ — коэффициенты самодиффузии атомов сорта A и B, $D = (C_A D_B^* + C_B D_A^*) C_v$ — коэффициент взаимной диффузии, E_A, E_B — энергия активации атомов A и B.

Первые два слагаемых описывают концентрационную диффузию, третье представляет процесс термодиффузии по неравновесным вакансиям. Направлен такой поток в сторону, противоположную градиенту температуры, т.е. более подвижный компонент накапливается у холодного конца образца. Четвертое и пятое слагаемые в правой части описывают процесс перераспределения элементов,

Рис. 6. График распределения температуры в стали в стационарном случае(после прекращения действия пучка электронов).

Рис. 7. Распределение титана в стали 12X18H10T после облучения пучком электронов: a — пространственное распределение, b — сечения по оси x, c — сечения по оси y.

Рис. 8. Распределение компонентов сплава по глубине образца: 1 — Nickel Ka1, 2 — Iron Ka1, 3 — Chromium Ka1, 4 — Titanium Ka1, 5 — Silicon Ka1, 6 — Carbon Ka1–2.

вызванный неоднородным по толщине распределением неравновесных вакансий. В данном случае более подвижный компонент должен накапливаться на поверхности образца. Налицо наличие конкуренции процесса термодиффузии и эффекта "вакансионного ветра".

Уравнение (3) решалось с помощью численных методов, так как решить аналитически это уравнение не представляется возможным. Как показывают расчеты, концентрация титана увеличивается у поверхности образца (рис. 7).

Результаты расчета хорошо согласуются с экспериментальными данными. На рис. 8 приведены результаты измерения распределения компонентов сплава по глубине. Видно, что концентрация титана возрастает у поверхности образца и на границах зерен.

Заключение

Облучение материалов пучком электронов приводит к аномальному перераспределению элементов в сплавах. Это позволяет создать заранее заданный профиль распределения примеси и обеспечить необходимые эксплуатационные свойства изделий.

Список литературы

- Курнаев В.А. Стенд имитационных испытаний в сопровождение исследований на токамаке КТМ (СИИ-КТМ). МИФИ, 2005.
- [2] Плотников С.В., Постников Д.В. // Изв. вузов Физика. 2002. № 8. С. 124–129.