Диаграммы состояния стационарного дугового разряда в аргоне и углекислом газе

© Е.Н. Васильев

04

Институт вычислительного моделирования СО РАН, 660036 Красноярск, Россия e-mail: ven@icm.krasn.ru

(Поступило в Редакцию 9 января 2013 г.)

Из решения уравнения Эленбааса-Хеллера для различных значений силы тока *I* и радиуса *R* определены температура, удельные и интегральные мощности энергетических механизмов стационарного равновесного дугового разряда, горящего в цилиндрическом канале при атмосферном давлении в аргоне и углекислом газе. Результаты расчетов представлены в виде диаграмм состояния, предназначенных для оценки основных энергетических характеристик электрических дуг при заданных значениях *I* и *R*. Для углекислого газа выявлен эффект экранирования механизма теплопроводности на границе разряда, обусловленный особенностями температурной зависимости радиационных свойств.

Введение

В работе [1] были рассмотрены особенности формирования структуры стационарного равновесного дугового разряда в воздухе при различных условиях и определены границы радиационного режима. В дальнейших исследованиях [2] получены расчетные зависимости энергетических характеристик, описывающих состояние газоразрядной плазмы в воздухе при давлении 0.1 и 1 МРа. Вычисления были проведены в широком диапазоне значений радиуса трубки R и силы тока I для столба дугового разряда, ограниченного цилиндрической стенкой. Результаты расчетов представлены в виде диаграмм состояния, которые позволяют оценивать такие характеристики газоразрядной плазмы, как температуру, напряженность электрического поля, мощность джоулевой диссипации, интегральные и удельные мощности радиационных и теплопроводных энергопотерь. В настоящей работе, являющейся продолжением [2], приведены диаграммы состояния для дугового разряда в аргоне и углекислом газе при атмосферном давлении.

Постановка задачи

Распределение температуры в разряде, горящем в цилиндрическом объеме и имеющем осевую симметрию, описывается уравнением Эленбааса-Хеллера следующего вида:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\lambda\,\frac{\partial T}{\partial r}\right) + q_J - q_R = 0,\tag{1}$$

где r — радиус, T — температура, λ — коэффициент теплопроводности газа, q_J — мощность джоулевой диссипации, q_R — объемная мощность радиационных энергопотерь. Уравнение (1) дополняется граничными условиями в центре разрядной области и на внешней границе

$$\left[\frac{\partial T}{\partial r}\right]_{r=0} = 0, \qquad [T]_{r=R} = T_0. \tag{2}$$

Величина мощности джоулевой диссипации определяется из выражения $q_J = \sigma E^2$. Напряженность электрического поля *E* зависит от силы тока и распределения электропроводности $\sigma(r)$ по радиусу:

$$E = I/2\pi \int_{0}^{R} \sigma(r) r dr.$$
(3)

Электрические дуги при поперечном размере высокотемпературной зоны порядка 1 ст имеют малую оптическую толщину, поэтому для расчета величины q_R было использовано приближение объемного излучателя [1].

Решение краевой задачи (1)-(3) проводилось численно с учетом температурных зависимостей свойств газов, которые вводились в программу в виде таблиц для степеней черноты $\varepsilon(T)$, коэффициентов электропроводности $\sigma(T)$ и теплопроводности $\lambda(T)$. Для аргона использованы данные ε из [3], σ и λ из [4], для углекислого газа — ε из [5], σ и λ из [6]. Решение уравнений (1)-(3) для заданных значений R и I позволяет определить температурный профиль T(r) и рассчитать удельные и интегральные энергетические характеристики разряда. Величина пространственного шага в расчетах принималась равной 0.5 mm.

Анализ результатов расчета

Диаграммы состояния построены на основе расчета температурного распределения и энергетических характеристик осесимметричного дугового разряда. Для этого решалась задача (1)-(3) для различных значений R и I, и по полученному температурному профилю T(r) рассчитывался энергетический баланс разряда в локальных

Рис. 1. a — зависимости I(R), соответствующие значениям $k_L = 0.1$ (кривая I), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в аргоне; b — зависимости T(R) для $k_L = 0.1$ (I), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в аргоне; c — зависимости E(R) для $k_L = 0.1$ (I), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в аргоне.

и интегральных величинах. В первом случае определялись удельные мощности механизмов излучения q_R , теплопроводности q_T и джоулевой диссипации q_J в центре разряда, во втором — суммарные по всему объему разряда мощности лучистых энергопотерь Q_R , джоулева тепловыделения Q_J , а также тепловая мощность Q_T , которая уносится из разряда теплопроводностью через площадь боковой стенки. По удельным и интегральным энергетическим характеристикам рассчитывались отношения $k_L = q_R/q_J$ и $k_I = Q_R/Q_J$, на диаграммах отображены изолинии для значений k = 0.1, 0.3, 0.5, 0.7 и 0.9.

Результаты расчетов удельных характеристик разряда в аргоне приведены на рис. 1. Изолинии энергетических соотношений k_L для дугового разряда в аргоне представлены в плоскости $R - \lg I$ (рис. 1, *a*). Графики позволяют оценить относительный вклад излучения и теплопроводности в энергобалансе разряда. На рис. 1, *a* кривая 3, отвечающая отношению $q_R = q_T$, делит плоскость на две области, в верхней области находятся режимы, в энергобалансе которых вклад излучения больше, в нижней режимы с более сильным влиянием теплопроводности. Соответственно, выше кривой 5 расположены режимы, в энергетическом балансе которых доминирует излучение $q_R \gg q_T$, а под кривой *1* находятся теплопроводные режимы, когда $q_T \gg q_R$.

Важными характеристиками состояния газоразрядной плазмы являются температура и напряженность электрического поля. Зависимости максимальной температуры в центре разряда $T_{max}(R)$ и напряженности электрического поля E(R) приведены для совокупности режимов, соответствующих изолиниям энергетических соотношений (рис. 1, *b* и *c*). Кривые E(R) расположены достаточно близко друг к другу, для улучшения их идентификации кривые *I* и *5* на рис. 1,*c* проведены пунктирными линиями. Данные в таблицах степеней черноты [3] приведены для температурного диапазона до $1.7 \cdot 10^4$ К, поэтому зависимости на графиках ограничены этим значением.

Сравнение диаграмм состояния, приведенных на рис. 1, с аналогичными диаграммами для воздуха [2] показывает, что изолинии энергетических соотношений для аргона расположены ниже, т.е. рост влияния излучения в энергобалансе разряда наблюдается при

Рис. 2. a — зависимости I(R) для $k_I = 0.1$ (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в аргоне; b — зависимости T(R) для $k_I = 0.1$ (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в аргоне; c — зависимости E(R) для $k_L = 0.1$ (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в аргоне.

меньших значениях силы тока. Это вызвано тем, что для аргона величина коэффициентов теплопроводности существенно ниже, чем у воздуха (особенно для температур $T < 10^4$ K). Излучательная способность аргона также меньше, чем у воздуха, что в итоге обусловливает меньшую суммарную мощность радиационных и теплопроводных энергопотерь. Следовательно, для их компенсации требуются меньшие значения джоулевой диссипации и напряженности электрического поля, уровень расположения кривых E(R) для аргона примерно вдвое ниже, чем для воздуха.

Характеристики интегрального энергобаланса разряда в аргоне приведены на рис. 2. На рис. 2, a взаимное расположение областей, относящихся к теплопроводному и радиационному режимам, такое же, как и на диаграмме для удельных характеристик (рис. 1, a), но в случае интегральных характеристик переход к радиационному режиму происходит при существенно больших значениях I. Это обусловлено тем, что последовательное увеличение силы тока приводит к наибольшему росту температуры на оси разряда, поэтому вклад излучения сначала начинает доминировать локально в центре, затем в прилегающих областях, а в конечном итоге в интегральном энергобалансе всего разряда. Особенностью изолиний интегральных энергетических соотношений для аргона является их слабая зависимость от радиуса.

Для углекислого газа следует отметить близкие с воздухом по характеру и значениям зависимости $\lambda(T)$ и $\sigma(T)$, но значительно более высокие значения коэффициента черноты, особенно в диапазоне температур $10^3 - 2 \cdot 10^3$ К. Характеристики удельного и интегрального энергобаланса дугового разряда в CO₂ представлены на рис. 3 и 4. Кривые на рисунках имеют существенно более сложный характер по сравнению с аргоном, вызванный, прежде всего, наличием экстремумов в зависимостях $\lambda(T)$ и $\varepsilon(T)$. Данные в таблицах степеней черноты CO₂ [5] приведены до значений температуры $1.2 \cdot 10^4$ К, поэтому зависимости на графиках ограничены этой величиной.

Сравнивая удельные и интегральные характеристики, приведенные на рис. 3, a и 4, a, следует отметить следующую особенность. При малых значениях R изолинии интегрального энергобаланса расположены выше соответствующих изолиний удельных характеристик. Но при увеличении R изолинии интегрального энергобаланса резко снижаются, и для значений R > 33 mm возможны

Puc. 3. a — зависимости I(R) для $k_L = 0.1$ (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; b — зависимости T(R) для $k_L = 0.1$ (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; c — зависимости E(R) для k_L (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; c — зависимости E(R) для k_L (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; c — зависимости E(R) для k_L (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; c — зависимости E(R) для k_L (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; c — зависимости E(R) для k_L (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; c — зависимости E(R) для k_L (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; c — зависимости E(R) для k_L (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; c — зависимости E(R) для k_L (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; c — зависимости E(R) для k_L (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; c — зависимости E(R) для k_L (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; c — зависимости E(R) для k_L (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; c — зависимости E(R) для k_L (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; c — зависимости E(R) для k_L (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; k_L (1), 0.3 (2), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; k_L (1), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; k_L (1), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; k_L (1), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; k_L (1), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; k_L (1), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; k_L (1), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; k_L (1), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; k_L (1), 0.5 (3), 0.7 (4), 0.9 (5) в углекислом газе; k_L (1), 0.8 (2), 0.9 (3) в углекислом газе; k_L (1), 0.9 (2), 0.9 (3) в углекислом газе; k_L

только радиационные режимы. На первый взгляд это снижение находится в противоречии с расположением изолиний энергобаланса в удельных величинах, которые в этом диапазоне R находятся на примерно постоянном уровне.

Для выяснения причины такого качественного несоответствия поведения локальных и интегральных характеристик рассмотрим приведенные на рис. 5 распределения температуры T(r) (кривая 1) и удельных мощностей энергетических механизмов $q_I(r)$, $q_R(r)$ и $q_T(r)$ (кривые 2, 3 и 4) при значениях R = 40 mm и I = 150 A, как следует из рис. 3, а, при этих параметрах в центре разряда выполняется соотношение $q_R \approx q_T$. Из рис. 5 видно, что при удалении от оси разряда мощность стока энергии за счет теплопроводности быстро падает и при значении $r \approx 10 \,\mathrm{mm}$ меняет знак. В зоне разряда с r > 10 mm действует фактически только один механизм энергопотерь — излучение. При значении $r > 15 \,\mathrm{mm}$ температура в разряде падает ниже $6 \cdot 10^3 \,\mathrm{K}$, здесь газ становится практически неэлектропроводным, и мощность джоулевой диссипации стремится к нулю. В этой периферийной части разряда следует выделить

слой ($20 \,\mathrm{mm} < r < 35 \,\mathrm{mm}$), в котором наблюдается рост мощности радиационных энергопотерь, несмотря на уменьшение температуры газа с $4 \cdot 10^3$ до $2 \cdot 10^3$ К и ниже. Этот рост обусловлен резким увеличением коэффициента черноты CO_2 (с $3.3 \cdot 10^{-4}$ при $4 \cdot 10^3$ K до $3.7 \cdot 10^{-2}$ при 2 · 10³ K), превосходящим темп снижения величины сомножителя T⁴ в законе теплового излучения Стефана-Больцмана. По сравнению с центром разряда величина удельной мощности излучения q_R здесь заметно ниже, но объем этого слоя, пропорциональный r², достаточен для того, чтобы в данном случае обеспечить радиационный унос всей тепловой энергии, доставляемой сюда теплопроводностью из высокотемпературной зоны разряда. В итоге для канала с $R \ge 40 \,\mathrm{mm}$ вся выделившаяся за счет джоулевой диссипации энергия выходит из объема разряда в виде излучения. Таким образом, периферийный слой газа с высоким значением степени черноты фактически экранирует центральную высокотемпературную зону разряда от теплопроводного теплообмена с окружающим холодным газом и стенкой и тем самым способствует пространственной локализации столба разряда. Такой эффект экранирования

характерен прежде всего для CO_2 как представителя трехатомных газов, имеющего высокую степень черноты в диапазоне низких температур $(10^3 - 2 \cdot 10^3 \text{ K})$. Так, в воздушной среде при снижении температуры значение степени черноты остается низким, а влияние излучения пренебрежимо малым, для воздуха при $T = 2 \cdot 10^3 \text{ K}$ $\varepsilon = 2.9 \cdot 10^{-5}$ для p = 0.1 MPa и $\varepsilon = 2.9 \cdot 10^{-4}$ для p = 1 MPa.

Представленные диаграммы энергетического состояния плазмы равновесного дугового разряда позволяют установить соотношение мощностей радиационных и теплопроводных энергопотерь k (рис. 1, a, 2, a, 3, a и 4, a), значение максимальной температуры T_{max} (рис. 1, b, 2, b, 3, b и 4, b), напряженности электрического поля (рис. 1, c, 2, c, 3, c и 4, c). Дополнительно к этим характеристикам по значению T_{max} (рис. 1, b и 3, b) с учетом температурной зависимости коэффициента электропроводности $\sigma(T)$ рассчитывается величина $\sigma_{\text{max}}E^2$, радиационных $k_L\sigma_{\text{max}}E^2$ и теплопроводных энергопотерь $(1 - k_L)\sigma_{\text{max}}E^2$ на оси разряда. При расчете интегральных характеристик из рис. 2, c и 4, c сначала опреде-

ляется значение напряженности электрического поля E, затем вычисляются значения мощностей джоулева тепловыделения IE, радиационных k_IIE и теплопроводных $(1 - k_I)IE$ энергопотерь на единицу длины дугового столба. Таким образом, с помощью диаграмм состояния определяются основные энергетические характеристики стационарной электрической дуги, горящей в цилиндрическом канале.

При оценке параметров электрических дуг следует учитывать, что данные в диаграммах состояния соответствуют той части столба разряда, где отсутствует влияние приэлектродных областей.

Заключение

Представленные диаграммы состояния позволяют оценить степень влияния и мощность энергетических механизмов, величины напряженности электрического поля и максимальной температуры в осесимметричном стационарном дуговом разряде, горящем в аргоне и углекислом газе при различных значениях *R* и *I*. Соотношение интегральных мощностей описывает энергобаланс всего

Рис. 5. Распределения T(r) (1), $q_J(r)$ (2), $q_R(r)$ (3) и $q_T(r)$ (4) в углекислом газе.

разряда в целом, соотношение удельных мощностей энергетических механизмов в центре разряда устанавливает масштаб температуры, от которого в значительной степени зависят основные характеристики разряда. Энергетические характеристики разряда для одно-, двухи трехатомных газов существенно различаются как по величине, так и характеру зависимостей.

Список литературы

- [1] Васильев Е.Н. // Теплофизика и аэромеханика. 2010. Т. 17. Вып. 3. С. 441-449.
- [2] Васильев Е.Н. // ЖТФ. 2012. Т. 82. Вып. 12. С. 47-51.
- [3] Ветлуцкий В.Н., Онуфриев А.Т., Севастьяненко В.Г. // ПМТФ. 1965. Вып. 4. С. 71–78.
- [4] Devoto R.S. // Phys. Fluid. 1967. Vol. 10. N 2. P. 354-364.
- [5] Каменщиков В.А., Пластинин Ю.А., Николаев В.М., Новицкий Л.А. Радиационные свойства газов при высоких температурах. М.: Машиностроение, 1971. 440 с.
- [6] Андриатис А.В., Соколова И.А. // Математическое моделирование. 1995. Т. 7. Вып. 2. С. 89–125.