07

Высокотемпературная фотолюминесценция твердых растворов CdHgTe, выращенных молекулярно-лучевой эпитаксией

© К.Д. Мынбаев, 1 Н.Л. Баженов, 1 А.В. Шиляев, 1 С.А. Дворецкий, 2 Н.Н. Михайлов, 2 М.В. Якушев, 2 В.Г. Ремесник, 2 В.С. Варавин 2

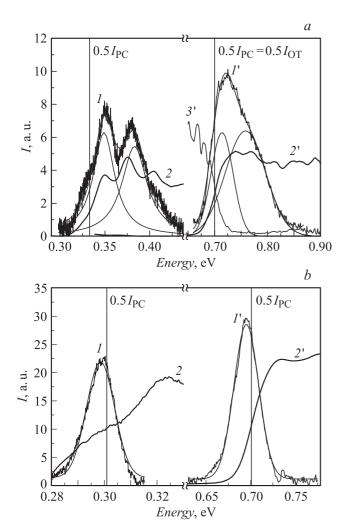
¹ Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия

² Институт физики полупроводников им. А.В. Ржанова СО РАН, 630090 Новосибирск, Россия

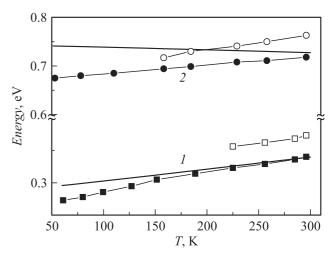
e-mail: mynkad@mail.ioffe.ru

(Поступило в Редакцию 28 января 2013 г.)

Проанализированы спектры высокотемпературной (до $300\,\mathrm{K}$) фотолюминесценции гетероэпитаксиальных структур на основе твердых растворов CdHgTe, выращенных молекулярно-лучевой эпитаксией и излучавших при комнатной температуре в диапазоне длин волн $\lambda=1.5-4.3\,\mu\mathrm{m}$. Показано, что наблюдение фотолюминесценции узкощелевого полупроводника CdHgTe при высоких температурах и особенности формы ее высокотемпературных спектров могут быть объяснены разупорядочением твердого раствора, как это имеет место, например, в твердых растворах нитридов III группы.


Твердые растворы СdHgTe, являющиеся одним из основных материалов для инфракрасных фотоприемников, в последнее время рассматриваются и как материал для изготовления излучателей, например для оптопар систем газового анализа [1-3]. Очевидно, что рабочая температура излучателей должна быть не ниже температуры работы фотоприемников, а она в настоящее время для приборов на основе CdHgTe, работающих в режиме ограничения фоновым излучением в диапазоне длин волн $\lambda = 3-5 \,\mu\text{m}$, достигает 180–200 K [4]. В приложениях, менее требовательных по чувствительности, фотоприемники на основе СdHgTe работают и при комнатной температуре. Исследования излучательных процессов в CdHgTe ранее в основном ограничивались температурным диапазоном $T = 2 - 150 \,\mathrm{K}$. Трудности с регистрацией излучения из СdHgTe при более высоких температурах, как считалось, были обусловлены фундаментальными причинами, и прежде всего влиянием оже-рекомбинации [5-7]. Однако современные гетероэпитаксиальные структуры (ГЭС) на основе CdHgTe, выращиваемые молекулярно-лучевой эпитаксией (МЛЭ), излучают и при 300 К [3,8–11], что делает перспективы изготовления высокотемпературных излучателей вполне реальными.

В настоящей работе авторы анализируют особенности высокотемпературных ($T=50-300\,\mathrm{K}$) спектров фотолюминесценции ($\Phi\Pi$), оптического пропускания ($O\Pi$) и фотопроводимости ($\Phi\Pi$) ГЭС CdHgTe, излучавших при $T=300\,\mathrm{K}$ в диапазоне $T=1.5-4.3\,\mu\mathrm{m}$ и перспективных для создания излучателей ближнего и среднего инфракрасного диапазонов. ГЭС были выращены на подложках GaAs или Si с буферным слоем ZnTe/CdTe и имели активный (излучающий) слой либо в виде однородной по составу x_a пленки толщиной h от 3.7 до $8.8\,\mu\mathrm{m}$, заключенной между тонкими (до $1\,\mu\mathrm{m}$) варизонными защитными слоями, либо в виде широкой ($50-200\,\mathrm{nm}$) потенциальной ямы с составом в яме x_w


и барьерных слоях x_b . Значения x_a , x_b и x_w , а также толщины слоев в ГЭС контролировались в процессе роста с помощью эллипсометрических измерений. Краткие сведения о структуре подобных образцов приведены в работе [8]. Спектры ФЛ записывались при возбуждении со стороны ГЭС полупроводниковым лазером: импульсным с $\lambda = 1.03 \, \mu \text{m}$ или непрерывным с $\lambda = 0.95 \, \mu \mathrm{m}$ на автоматизированной установке с монохроматором МДР-23. Сигнал ФЛ регистрировался Ge-фотодиодом или охлаждаемым InSb-фотодиодом со стороны подложки. Спектры ОП и ФП записывались с помощью фурье-спектрометров Infralum-801 и Shimadzu 8400S для определения края оптического поглощения в активной области ГЭС и соответствующего значения ширины запрещенной зоны $E_{\rm g}$. Величина $E_{\rm g}$ оценивалась как энергия, соответствовавшая уровню 50% ФП

На рис. 1, a представлены спектры $\Phi \Pi$, $\Phi \Pi$ и $O\Pi$ двух ГЭС, записанные при 300 К. В обоих случаях спектр ФЛ имел выраженную асимметричную форму, и она не зависела от мощности возбуждения вплоть до мощностей, приводивших к термическому повреждению образцов. При разложении обоих спектров ФЛ на две гауссовы полосы оказывалось, что полуспад и кривой ФП, и кривой ОП был близок к максимуму низкоэнергетической полосы ФЛ. Так, для образца N 1215 величина E_g , определенная по спектрам $\Phi\Pi$ и $O\Pi$, составила $0.710 \,\mathrm{eV}$, что, согласно эмпирической зависимости $E_g(x)$ из работы [12], соответствовало $x_a=0.57$. Измерения $\Phi\Pi$, проведенные при 77 K (рис. 1, b), дали близкое значение x_a . Таким образом, можно считать, что для данного образца низкоэнергетическая полоса ФЛ при 300 К была обусловлена "межзонной" рекомбинацией в активной области ГЭС. Полуширина этой полосы составляла ~ 30 meV. Высокоэнергетическая полоса излучения с полушириной $\sim 70\,\text{meV}$ отстояла при $300\,\text{K}$ от максимума "межзонной" на расстояние $\Delta E = 46 \, \mathrm{meV}$. На рис. 1, b представлены спектры ФЛ и ФП этих же ГЭС, записанные при 77 К. В данном случае спектры содержат только одну гауссову полосу, положение максимума которой близко к краю ФП (небольшой стоксов сдвиг вызван влиянием хвостов плотности состояний [8]). Для ГЭС #1215 подобный вид имели все спектры ФЛ, записанные в интервале $T=4.2-150\,\mathrm{K}$; в спектрах других структур при $T<50\,\mathrm{K}$ могли проявляться переходы, связанные с наличием акцепторных состояний [8]. Примеры зависимости положения пиков полос ФЛ от температуры представлены на рис. 2.

В табл. 1 и 2 приведены параметры исследованных ГЭС и обобщены результаты измерений спектров ФЛ. Наличие высокоэнергетической особенности оказалось характерным для спектров $\sim 20\%$ ГЭС с активной областью в виде однородной пленки и $\sim 80\%$ ГЭС с активной областью в виде потенциальной ямы, при этом для всех ГЭС вплоть до $x_a=0.29$ спектры ФЛ

Рис. 1. Спектры ФЛ (I), ФП (2) и ОП (3) ГЭС N 0117 (I и 2) и N 1215 (I'-3') при 300 K (a) и \sim 80 K (b). Тонкие линии показывают подгонку спектров и их разложение на гауссовы составляющие. Вертикальные линии соответствуют 50% интенсивности сигналов ОП (I_{OT}) и/или ФП (T_{PC}) . Интенсивности сигналов в спектрах несопоставимы.

Рис. 2. Температурные зависимости положения пиков "межзонной" Φ Л (сплошные символы), высокоэнергетических пиков Φ Л (пустые символы) и ширины запрещенной зоны активной области Γ ЭС (линии), рассчитанной по формуле из работы [12] по данным ОП и/или Φ П, для структур N 1103 (I) и N 1215 (I).

регистрировались до комнатной температуры. Как следует из таблиц, особенность начинала проявляться в спектрах при температурах $T_c > 127\,\mathrm{K}$. При попытке выделить в спектрах отдельную полосу оказывалось, что при $300\,\mathrm{K}$ величина ΔE составляла от $27\,\mathrm{дo}~56\,\mathrm{meV}$ (вероятно, что в ряде случаев проявление явных "пиков" на высокотемпературной особенности ФЛ могло быть обусловлено интерференционными эффектами). Проследить зависимость ΔE или T_c от параметров ГЭС (в част-

Таблица 1. Параметры ГЭС CdHgTe с активной областью в виде однородной пленки

Образец	Подложка	h, μm	x_a	T_c , K	ΔE , meV
N 0911			0.29	_	_
N 1128			0.29	_	_
N 1115			0.30	_	_
N 0031		3.7	0.34	_	_
N 1003		4.1	0.38	_	_
N 0712		7.4	0.38	_	_
N 0703	GaAs	7.4	0.38	_	_
N 0713		7.8	0.38	_	_
N 0706		8.4	0.39	150	27
N 0929		8.8	0.40	_	_
N 0716		7.1	0.39	_	_
N 1215		5.2	0.57	158	46
N 1108		5.2	0.62	_	_
N 1030		5.2	0.33	200	40
N 1103		5.1	0.33	225	33
N 0119		4.4	0.35	_	_
N 0928	Si	4.6	0.37	_	_
N 0930		5.7	0.38	_	_
N 0318		3.7	0.58	_	_
N 0321		3.8	0.64	_	_

Образец	N 0908	N 0114	N 0116	N 0916	N 0117	N 9161	N 9171	N 1114	N 0917	N 0111	N
x_w x_b	0.30 0.50	0.32 0.69	0.32 0.68	0.33 0.49	0.34 0.69	0.35 0.44	0.36 0.54	0.36 0.72	0.37 0.52	0.40 0.75	0.41 0.74
T_c , K	_	156	182	160	190	127	_	_	300	140	249
ΔE , meV	_	28	34	40	33	46	_	_	56	51	50

Таблица 2. Параметры ГЭС с активной областью в виде потенциальной ямы (подложка из GaAs)

Примечание. Ширина ямы ГЭС N 0117 — 50 nm, остальных ГЭС — 200 nm.

ности, x_a или x_w) не удалось. Отметим, что регистрация высокотемпературной ФЛ и в части случаев наличие в ее спектре высокоэнергетической особенности, имели место и для ГЭС, где верхний широкозонный защитный слой отсутствовал. Таким образом, данный эффект не был связан с наличием этого слоя и подавлением с его помощью поверхностной рекомбинации. Для ГЭС без высокоэнергетической особенности (прочерк в таблицах в графах T_c и ΔE) форма спектра при 300 К описывалась одной гауссовой кривой с полушириной 35—45 meV (см., например, [13]).

Сложная форма спектров с наличием высокоэнергетических полос и ранее наблюдалась при исследовании высокотемпературной ФЛ МЛЭ CdHgTe [3,9,10]. Для объяснения природы данных полос рассматривалась их связь с излучением, генерируемым в широкозонных или "переходных" (вызванных особенностями технологии МЛЭ) слоях ГЭС [3,10]. Однако энергетическое расстояние этих полос от линий, связываемых с "межзонными" переходами в активной области, не позволяет соотнести их с излучением из широкозонных слоев ГЭС. Ход температурной зависимости положения пиков этих полос исключает их связь и с излучением из буферных слоев или подложки (так, в Si, GaAs, ZnTe и CdTe $dE_g/dT < 0$, в то время как в КРТ с x < 0.5 $dE_{g}/dT > 0$, см. рис. 2). Поэтому наиболее вероятным представляется влияние на форму высокотемпературных спектров ФЛ разупорядочения твердого раствора в самой активной области ГЭС. Действительно, исследования Φ Л МЛЭ CdHgTe при $4.2 < T < 100\,\mathrm{K}$ выявили значительное нарушение дальнего порядка в кристаллической решетке твердого раствора, выражавшееся в уширении линии излучения локализованного экситона и в упоминавшемся выше стоксовом сдвиге [8]. Так, для ГЭС с $x_a \sim 0.38-0.40$, выращенных МЛЭ, ширина экситонной линии на половинной высоте ("полуширина") при $T = 4.2 \,\mathrm{K}$ составляла от 12 до 17 meV, а исследованные в тех же условиях пленки аналогичного состава, выращенные жидкофазной эпитаксией (ЖФЭ), имели полуширину этой линии порядка 5 мэВ. Последняя цифра соответствует уширению, обусловленному чисто стохастическими флуктуациями состава твердого раствора [8], свидетельствуя о высоком структурном совершенстве пленок, но при этом зарегистрировать сигнал Φ Л при $T > 150 \, \text{K}$ в образцах Ж Φ Э не удалось. Также в объемных монокристаллах и ЖФЭ-пленках CdHgTe c составом, например $x\sim0.4$, стоксов сдвиг исчезал, начиная уже с температур $\sim 50-70\,\mathrm{K}$ [5,6]. Считалось, что этот эффект объясняется термической делокализацией экситона, и более высокотемпературная ФЛ, когда ее удавалось наблюдать, была обусловлена рекомбинацией свободного экситона или свободных носителей, так что энергия излучаемого фотона была близка к номинальной величине E_g . Для исследованных ГЭС и МЛЭ-структур, описанных в работах [8,9], энергия пика ФЛ, связанного с "межзонным" излучением, оставалась меньше E_g до $T > 200\,\mathrm{K}$ (рис. 2).

Таким образом, можно предположить, что разупорядочение твердого раствора (и прежде всего, по-видимому, значительная неоднородность состава [8]) в пленках CdHgTe, выращенных МЛЭ, и является тем фактором, который делает возможным наблюдение высокотемпературной ФЛ. Действительно, благоприятное влияние неоднородностей состава твердых растворов, даже на уровне стохастических флуктуаций на локализацию носителей и интенсивность ФЛ при высоких температурах хорошо известно (см., например, [14]). Увеличение масштаба неоднородностей состава сверх таких флуктуаций может еще более усиливать этот эффект. Так, интенсивная ФЛ из структур на основе InGaN, наблюдаемая в образцах даже с очень высокой плотностью дефектов, объясняется как раз наличием значительных неоднородностей состава, связанных с неустойчивостью индия в твердом растворе [15]. Считается, что локализация экситона на этих неоднородностях препятствует диффузии носителей к центрам безызлучательной рекомбинации и способствует рекомбинации излучательной. Появление в спектрах ФЛ высокоэнергетической особенности также неоднократно наблюдалось в полупроводниковых материалах с существенным нарушением дальнего порядка, проявлявшемся, например, в выпадении наноразмерных кластеров второй фазы (см., например, [16]). Таким образом, весьма вероятно, что появление этой особенности в спектрах ФЛ МЛЭ CdHgTe также связано с тем, что при увеличении температуры создаются условия для рекомбинации в локальных областях, имеющих отличный от основной матрицы состав твердого раствора, либо содержащих специфические протяженные дефекты. Частое наблюдение этой особенности в спектрах ФЛ структур с потенциальными ямами может быть объяснено сложностью технологического процесса выращивания таких структур и чувствительностью оптических свойств структур к его параметрам [8]. Что касается условий возникновения высокоэнергетической особенности ФЛ, то они определяются взаимоотношением скоростей энергетической релаксации фотовозбужденных носителей, их латерального транспорта, и излучательной, и безызлучательной рекомбинации, и должны стать предметом дальнейших исследований.

Очевидно, что с точки зрения создания излучателей наличие таких областей является не недостатком, а преимуществом материала, — так, в структурах на основе МЛЭ AlGaN неоднородности состава, локализующие экситоны, в настоящее время создаются для увеличения внешнего квантового выхода излучения искусственно [17,18]. Однако пример CdHgTe показывает, что технология введения неоднородностей должна быть отработана таким образом, чтобы при высоких температурах обеспечить, с одной стороны, максимальную интенсивность излучения структур, а с другой — минимальную полуширину его линий.

Авторы благодарны А.А. Грешнову, Г.Г. Зегре и С.В. Иванову за полезные обсуждения.

Работа выполнена в рамках совместного российскоукраинского проекта Фондов фундаментальных исследований (грант РФФИ 11-02-90434 и ГФФИ Украины Ф40.2.65).

Список литературы

- [1] Tonheim C.R., Sudbo A.S., Selvig E., Haakenaasen R. // IEEE Photonic Techn. L. 2011. Vol. 23. P. 36.
- [2] Андронов А.А., Ноздрин Ю.Н., Окомельков А.В., Варавин В.С., Смирнов Р.Н., Икусов Д.Г. // ФТП. 2006. Т. 40. С. 1300.
- [3] Zanatta J.P., Noël F., Ballet P., Hdadach N., Million A., Destefanis G., Mottin E., Kopp C., Picard E., Hadji E. // J. Electron. Mater. 2003. Vol. 32. P. 602.
- [4] Rogalski A. // Infr. Phys. Technol. 2011. Vol. 54. P. 136.
- [5] Lusson A., Fuchs F., Marfaing Y. // J. Cryst. Growth. 1990. Vol. 101. P. 673.
- [6] Herrmann K.H., Hoerstel W., Möllmann K.-P., Sassenberg U., Tomm J.W. // Semicond. Sci. Technol. 1992. Vol. 7. P. 578.
- [7] Chu J., Chang Y. // Mercury Cadmium Telluride: Growth, Properties and Applications / Ed. by P. Capper, J.W. Garland. London: John Wiley & Sons, 2011. P. 227.
- [8] Мынбаев К.Д., Баженов Н.Л., Иванов-Омский В.И., Михайлов Н.Н., Якушев М.В., Сорочкин А.В., Ремесник В.Г., Дворецкий С.А., Варавин В.С., Сидоров Ю.Г. // ФТП. 2011. Т. 45. С. 900.
- [9] Robin I.C., Taupin M., Derone R., Ballet P., Lusson A. // J. Electron. Mater. 2010. Vol. 39. P. 868.
- [10] Zhang X., Shao J., Chen L., Lũ X., Guo S., He L., Chu J. // J. Appl. Phys. 2011. Vol. 110. P. 043 503.
- [11] Hadji E., Picard E., Roux C., Molva E., Ferret P. // Opt. Lett. 2000. V. 25. P. 725.
- [12] Laurenti J.P., Camassel J., Bouhemadou A., Toulouse B., Legros R., Lusson A. // J. Appl. Phys. 1990. V. 67. P. 6454.
- [13] Ivanov-Omskii V.I., Mynbaev K.D., Bazhenov N.L., Smirnov V.A., Mikhailov N.N., Sidorov G.Yu., Remesnik V.G., Varavin V.S., Dvoretsky S.A. // Phys. Stat. Sol. C. 2010. Vol. 7. P. 1621–1623.

- [14] Powell R.E.L., Novikov S.V., Luckert F., Edwards P.R., Akimov A.V., Foxon C.T., Martin R.W., Kent A.J. // J. Appl. Phys. 2011. Vol. 110. P. 063 517.
- [15] Stringfellow G.B. // J. Cryst. Growth. 2010. Vol. 312. P. 735.
- [16] Mercaldo L.V., Esposito E.M., Veneri P.D., Rezgui B., Sibai A., Bremond G. // J. Appl. Phys. 2011. Vol. 109. P. 093 512.
- [17] Liao Y, Kao C, Thomidis C, Moldawer A, Woodward J, Bhattarai D, Moustakas T.D. // Phys. Stat. Sol. C. 2012. Vol. 9. P. 798.
- [18] Шевченко Е.А., Жмерик В.Н., Мизеров А.М., Ситникова А.А., Иванов С.В., Торопов А.А. // ФТП. 2012. Т. 46. С. 1022.