06

О температуре Дебая и параметрах Грюнайзена для ГПУ-кристаллов из молекул p-H₂ и o-D₂

© М.Н. Магомедов

Институт проблем геотермии Дагестанского научного центра РАН, 367030 Махачкала, Россия e-mail: mahmag4@mail.ru

(Поступило в Редакцию 1 ноября 2012 г.)

Исходя из парного потенциала межатомного взаимодействия Ми-Леннарда-Джонса, получены выражения для температуры Дебая (Θ), а также для первого ($\gamma = -[\partial \ln(\Theta)/\partial \ln(V)]_T$) и второго ($q = [\partial \ln(\gamma)/\partial \ln(V)]_T$) параметров Грюнайзена. Изучены условия, которым должны удовлетворять зависимости $\Theta(V/V_0)$, $\gamma(V/V_0)$ и $q(V/V_0)$ при $V/V_0 \rightarrow 0$ и при $V/V_0 \rightarrow \infty$. Здесь V/V_0 — отношение молярных объемов при давлении P и температуре T и при P = 0 и T = 0 К. Расчеты выполнены для кристаллов параводорода и ортодейтерия при T = 0 К для V/V_0 от 1.3 до 0.01. Получено хорошее согласие расчетных зависимостей с экспериментальными данными. Изучено изменение зависимостей $\Theta(V/V_0)$, $\gamma(V/V_0)$ и $q(V/V_0)$ при вариации изотопного состава кристалла.

Введение

Характеристическая температура Дебая (Θ) является одной из важнейших характеристик для кристалла с любым типом химической связи, ибо она входит во многие соотношения для активационных (вакансионных и диффузионных), термоупругих и калорических параметров. Именно величина Θ отделяет квантовую область температур от классической для конкретного кристалла. Поэтому весьма актуальной является задача получения термодинамически обоснованной зависимости функции Θ как от температуры (T), так и от давления (Р). Но если для "классических" кристаллов (где энергия "нулевых колебаний" значительно меньше энергии межатомного взаимодействия) имеются выражения для температуры Дебая и первого параметра Грюнайзена: $\gamma = -[\partial \ln(\Theta)/\partial \ln(V)]_T$ (см. обзор в [1,2]), то для "квантовых кристаллов" задача не решена до сих пор.

Ранее нами был изучен вопрос о термодинамически корректной зависимости функции $\Theta(T)$ при нулевом давлении в кристалле [1,2]. Было показано, что если для функции $\Theta(T)$ в области низких температур $(T/\Theta_0 \ll 1)$ принять зависимость вида

$$\Theta(T)_{\text{low}} \cong \Theta_0[1 - \chi_n(T/\Theta_0)^k],$$
где $\Theta_0 = \lim_{T \to 0 \text{ K}} \Theta(T),$
(1)

то применительно к *n*-мерному кристаллу простого вещества входящие в (1) постоянные должны удовлетворять условиям

$$\chi_n \ge 0, \quad k = n+1. \tag{2}$$

Именно эти условия обеспечивают выполнение третьего начала термодинамики в "сильной" формулировке Планка [3]:

$$\lim_{T/\Theta\to 0} S \bowtie C \sim \lim_{T/\Theta\to 0} (T/\Theta_0)^n = 0.$$
(3)

Здесь *S* и *C* — энтропия и теплоемкость одного моля *n*-мерного кристалла.

При этом величину Θ_0 для трехмерного кристалла необходимо определять не из формулы, которая получается при условии независимости Θ от T: $(C/3Nk_b)_{\text{low}} \cong (4\pi^4/5)(T/\Theta_0)^3$, а из формулы следующего вида [1,2]:

$$\left(\frac{C}{3N_Ak_b}\right)_{\text{low}} \cong \frac{4\pi^4}{5} \left[\frac{T}{\Theta(T)}\right]^3 + \frac{3}{8}k(k-1)\chi_3 \left(\frac{T}{\Theta_0}\right)^{k-1}$$
$$\cong \left(\frac{4\pi^4}{5} + \frac{9}{2}\chi_3\right) \left(\frac{T}{\Theta_0}\right)^3. \tag{4}$$

Здесь *N_A* — число Авогадро, *k_b* — постоянная Больцмана.

В настоящей работе будет изучен вопрос о зависимости функции Θ от величины сжатия (V/V_0) кристалла вдоль изотермы. Здесь V/V_0 — отношение молярных объемов при давлении P и температуре T и при P = 0и T = 0 К. Кроме этого, будет изучена зависимость от V/V_0 как первого, так и второго $q = [\partial \ln(\gamma)/\partial \ln(V)]_T$ параметров Грюнайзена. Расчеты будут проведены для кристаллов изотопов водорода, ибо эти кристаллы в последнее время интенсивно исследуются при экстремальных сжатиях [4].

Метод расчета температуры Дебая для кристалла

Представим парное межатомное взаимодействие в виде потенциала Ми-Леннарда-Джонса [2,3]

$$\varphi(r) = \frac{D}{(b-a)} \left[a \left(\frac{r_0}{r} \right)^b - b \left(\frac{r_0}{r} \right)^a \right], \tag{5}$$

где D и r_0 — глубина и координата минимума потенциальной ямы, b и a — параметры, характеризующие жесткость и дальнодействие потенциала: b > a.

Рис. 1. Схематичное изображение симметричной потенциальной ямы (6), которая образуется из двух отталкивательных ветвей парного потенциала (5), и в которой колеблется центральный атом. Сплошная линия — парное взаимодействие центрального атома с правым соседом, штриховая — потенциал парного взаимодействия с левым соседом.

Рассмотрим трехатомную модель кристалла. Пусть крайние атомы фиксированы на расстоянии 2c друг от друга, а центральный атом колеблется в потенциальной яме, образованной "отталкивательными ветвями" парных потенциалов взаимодействия центрального атома с двумя крайними атомами (рис. 1) [1,2]:

$$\Psi(r) = -D + \frac{D^*a}{2(b-a)} \left[\left(\frac{r_0}{c-r} \right)^b - 2 \left(\frac{r_0}{c} \right)^b + \left(\frac{r_0}{c+r} \right)^b \right].$$
(6)

Здесь D^* — эффективная глубина потенциальной ямы

$$D^* = D - E_n / (k_n / 2), \tag{7}$$

где E_n — энергия колебательного движения атома в *n*-мерном кристалле, k_n — первое координационное число в *n*-мерной решетке, т. е. $k_n/2$ — это число диаметральнопротивоположных пар атомов, окружающих данный атом, между которыми он колеблется. Данные выражения были написаны исходя из соображений, которые возникают при рассмотрении рис. 1. Центральный атом колеблется в симметричной потенциальной яме, ибо условия как справа, так и слева для него одинаковые. В силу квантовых закономерностей атом не достигает минимума потенциальной энергии из-за того, что при T = 0 К имеются "нулевые колебания", а при T > 0 К добавляется еще и тепловое возбуждение колебаний. Именно это обстоятельство и учтено в (7). Отметим, что при $r/c \ll 1$ из (6) легко получить потенциальную энергию гармонического осциллятора в виде

$$\Psi(r) = -D + \frac{D^*ab(b+1)}{2(b-a)} \left(\frac{r_0}{c}\right)^b \left(\frac{r}{c}\right)^2.$$

Используя модель Дебая с зависимой от температуры величиной Θ , для удельной (на атом) внутренней энергии E_n можно получить выражение [2,4]

$$E_{n} = nk_{b}\Theta\left\{\frac{n}{2(n+1)} + \left(\frac{T}{\Theta}\right)\mathscr{D}_{n}\left(\frac{\Theta}{T}\right)\right\}$$
$$\times \left[1 - \left(\frac{T}{\Theta}\right)\left(\frac{\partial\Theta}{\partial T}\right)_{V}\right]. \tag{8}$$

Первое слагаемое в фигурных скобках в (8) определяет энергию "нулевых колебаний", а второе — энергию теплового возбуждения гармонических осцилляторов с дебаевским спектром распределения частот, где $\mathscr{D}_n(x)$ — функция Дебая для *п*-мерного кристалла

$$\mathscr{D}_n(x) = \frac{n}{x^n} \int\limits_0^x \frac{t^n}{[\exp(t) - 1]} dt$$

Для малых колебаний атомов квадрат средней частоты колебания атомов в *n*-мерном кристалле (т.е. частота Эйнштейна) определяется выражением [3]:

$$\omega^2 = \frac{1}{2\pi^2 nm} \sum_i k_i \left[\left(\frac{1}{r_i} \right) \varphi'(r_i) + \left(\frac{1}{2} \right) \varphi''(r_i) \right],$$

где m — масса атома, k_i — i-е координационное число, r_i — координата узла решетки, суммирование идет по координационным сферам.

Учитывая взаимодействие только ближайших соседей и то, что $\Psi(r)$ — это потенциал взаимодействия центрального атома сразу с двумя соседними, т.е. $k_n \varphi(r) = (k_n/2)\Psi(r)$, получаем $\omega^2 = = [k_n/(8\pi^2 nm)]\Psi''(r=0).$

Температура Дебая в *n*-мерном кристалле связана с температурой Эйнштейна (Θ_E) соотношением [3]:

$$\Theta^{2} = [(n+2)/n](2\pi\hbar\omega/k_{b})^{2} = [(n+2)/n]\Theta_{E}^{2}, \qquad (9)$$

где \hbar — постоянная Планка. Тогда, используя (6)—(8), для функции $\Theta(T)$ получим квадратное уравнение, решая которое можно получить

$$\Theta(T) = A_w \xi_n \left\{ -1 + \left[1 + \frac{8D}{k_b A_w \xi_n^2} \left(1 - \frac{k_b T}{4D} \, \varpi_n \right) \right]^{1/2} \right\},\tag{10}$$

где введены следующие обозначения:

$$A_w = K_R \frac{(n+2)k_n a b(b+1)}{16n^2(b-a)} \left(\frac{r_0}{c}\right)^{b+2},$$
$$K_R = \frac{\hbar^2}{k_b r_0 m}, \quad \xi_n = \frac{4n^2}{k_n(n+1)},$$

$$\overline{\omega}_n = \xi_n \eta + (8n/k_n) [1 + (T/\Theta)\eta] \mathcal{D}_n(\Theta/T),$$

$$\eta = -(\partial \Theta/\partial T)_V.$$
(11)

Из (10) и (11) можно видеть, что функция $\Theta(T)$ при T = 0 K достигает максимума, где $\eta = 0$, а для $\Theta_0 = \Theta(T = 0 \text{ K})$ можно получить выражение [1,2]

$$\Theta_0 = A_w \xi_n \left[-1 + \left(1 + \frac{8D}{k_b A_w \xi_n^2} \right)^{1/2} \right].$$
(12)

Именно это выражение мы используем при изучении зависимости $\Theta(V/V_0)$ для конкретных трехмерных кристаллов. В этом случае величина объема связана с расстоянием между центрами ближайших ячеек в виде

$$V_0 = \left(\frac{\pi N_A}{6k_p}\right) r_0^3, \ V = \left(\frac{\pi N_A}{6k_p}\right) c^3, \ \frac{V}{V_0} = \left(\frac{c}{r_0}\right)^3, \quad (13)$$

где k_p — коэффициент упаковки структуры из N_A сферических ячеек.

Из (12) можно найти выражения для первого и второго параметров Грюнайзена

$$\gamma = -\left(\frac{\partial \ln \Theta_0}{\partial \ln V}\right)_T = \frac{b+2}{6(1+X_w)},\tag{14}$$

$$q = \left(\frac{\partial \ln \gamma}{\partial \ln V}\right)_T = \gamma \, \frac{X_w (1 + 2X_w)}{(1 + X_w)},\tag{15}$$

где

$$X_w = \frac{A_w \xi_3}{\Theta_0}.$$

Выражения (12) и (14) показали хорошее согласие с экспериментальными оценками, полученными при P = 0 и T = 0 К для многих кристаллов с различными структурами, характером химической связи и ролью квантовых эффектов [1,2,5].

Для определения параметра Грюнайзена часто используют "закон Грюнайзена", т.е. вычисление γ по экспериментальным данным коэффициента теплового расширения ($\alpha_p = (1/V)(\partial V/\partial T)_P$), модуля упругости ($B_T = -V(\partial P/\partial V)_T$), объема и теплоемкости:

$$\gamma = \alpha_p B_T V / C. \tag{16}$$

Однако (16) справедливо только в том случае, если величина Θ не меняется с температурой [6,7]. А так как нам необходимо будет сопоставлять результаты расчетов с корректными экспериментальными данными, будем считать, что величина Θ не зависит от температуры. В этом случае в (1) и в (4) положим $\chi_3 = 0$. Тогда метод расчета величины Θ_0 из температурной зависимости теплоемкости и метод расчета величины γ из формулы (16) будут справедливыми. А мы будем изучать зависимость функций Θ_0 , γ и q от аргумента V/V_0 вдоль изотермы T = 0 К.

Из (12)-(15) легко получить предельные соотношения для функций Θ_0 , γ и q при низких ($c \gg r_0$, т.е. $A_w \to 0$) и при высоких $(c \ll r_0, \text{ т.е. } A_w \to \infty)$ плотностях

$$\lim_{V/V_0 \to \infty} k_b \Theta_0 / D = \lim_{A_w \to 0} (8k_b A_w / D)^{1/2} = 0,$$
(17)

$$\lim_{V/V_0 \to \infty} \gamma = (b+2)/6 = \text{const}, \tag{18}$$

$$\lim_{V/V_0 \to \infty} q = [(b+2)/6] \lim_{A_w \to 0} A_w \xi_3 / \Theta_0 = 0,$$
(19)

$$\lim_{V/V_0\to 0} k_b \Theta_0/D = 4/\xi_3 = \text{const},$$
 (20)

$$\lim_{V/V_0 \to \infty} \gamma = [2(b+2)/(3\xi_3^2)] \lim_{A_w \to \infty} D/(k_b A_w) = 0, \quad (21)$$

$$\lim_{V/V_0 \to 0} q = [(b+2)/6] \lim_{X_w \to \infty} X_w (1+2X_w)/(1+X_w)^2$$
$$= (b+2)/3.$$
(22)

Выражения (17)-(19) показывают, что функция $\Theta_0(V/V_0)$ при $V/V_0 \to \infty$ асимптотически стремится к нулю по степенной зависимости $\sim (V_0/V)^{(b+2)/6}$. То есть колебаний решетки при $c \gg r_0$ (так же как и конденсированного состояния) уже не существует. Из (20)-(22) следует, что при $V/V_0 = 0$ функции $\Theta_0(V/V_0)$ и $q(V/V_0)$ достигают максимумов, а функция $\gamma(V/V_0)$ минимума

$$\Theta_{\max} = \frac{4k_n D}{9k_b}, \ q_{\max} = \frac{b+2}{3}, \ \gamma_{\min} = 0.$$
 (23)

Причем функция $\gamma(V/V_0)$ при $V/V_0 \to 0$ изменяется по зависимости $\sim (V/V_0)^{(b+2)/3}$.

Природа максимума у функции $\Theta_0(V/V_0)$ при $V/V_0 \rightarrow 0$ обусловлена усилением роли квантовых эффектов с ростом давления. При $V/V_0 \rightarrow 0$ амплитуда "нулевых колебаний" в ячейках становится сравнимой с расстоянием между центрами ячеек. Это ведет к туннельному переносу атомов по кристаллу и к тому, что функция $\Theta_0(V/V_0)$, достигнув максимума, уже не будет зависеть от давления, т.е. от величины V/V_0 .

Отметим, что на возможность перехода вещества в состояние квантовой жидкости при сверхсильном сжатии кристалла в области низких температур было указано в [8].

О функциональной зависимости параметра Грюнайзена

Обычно для зависимости $\gamma(V/V_0)$ берут выражение следующего вида [6,9–13]:

$$\gamma = \gamma_0 + \gamma_1 \left(\frac{V}{V_0}\right)^{q'},\tag{24}$$

где γ_0 и γ_1 — независящие от V/V_0 положительные константы, а величину q' полагают равной второму параметру Грюнайзена. Но справедливо ли данное пред-положение?

Параметры парного межмолекулярного потенциала (5) для ГПУ-кристаллов из p-H₂ и o-D₂, а также полученные из этих параметров значения температуры Дебая из (12) и параметров Грюнайзена из (14) и (15) при $V/V_0 = (c/r_0)^3 = 1$. Значения Θ_{max} и q_{max} рассчитаны из (23). В нижних строках для $\Theta_0(1)$ и $\gamma(1)$ указан интервал экспериментальных значений из работ [2,10,13]

Кристалл	r_0 , 10^{-10} m	$D/k_b, \mathrm{K}$	b	а	V ₀ из (13), cm ³ /mol	Θ ₀ (1), K	$\gamma(1)$	q(1)	Θ_{max}, K	q_{\max}
p-H ₂	3.791	37.53	23.57	5.21	23.203	118.50 116-125	2.47 2_2.28	2.545	200.16	8.523
o-D ₂	3.604	44.56	19.91	6.04	19.933	110-125 113.983 106-114	2-2.28 2.50 2-2.5	1.515	237.653	7.303

И

Из (24) легко получить выражение для второго параметра Грюнайзена в виде

$$q = \frac{\gamma_1}{\gamma} \left(\frac{V}{V_0} \right)^{q'} q' \left\{ 1 + \ln\left(\frac{V}{V_0}\right) \left[\frac{\partial \ln(q')}{\partial \ln(V)} \right] \right\}.$$
 (25)

Из (25) видно, что равенство q = q' выполняется только в трех случаях: 1) если q' не зависит от V и $\gamma_0 = 0, 2)$ если $\gamma_0 = 0$ и $V/V_0 = 1, 3)$ если $\gamma_0 \neq 0, q'$ не зависит от V и $V/V_0 \gg 1$. Так как два последних случая не применимы для кристалла с произвольным значением V/V_0 , то остается только первый случай: $\gamma_0 = 0$. В этом случае функция $\Theta_0(V/V_0)$ при $V/V_0 \rightarrow 0$ достигает максимума. Именно $\gamma_0 = 0$ и берут для описания решеточного параметра Грюнайзена для металлов [11]. Если же допустить (как это сделано в [9,11,12]), что q' не зависит от V и $\gamma_0 \neq 0$, то из (24) и (25) можно получить для Θ_0 и q зависимости следующего вида:

$$\Theta_0 = \Theta(1) \left(\frac{V}{V_0}\right)^{-\gamma_0} \exp\left\{\frac{\gamma_1}{q'} \left[1 - \left(\frac{V}{V_0}\right)^{q'}\right]\right\}, \quad (26)$$

где $\Theta(1) = \Theta_0(V/V_0 = 1)$,

$$q = q' \frac{\gamma_1(\frac{V}{V_0})^{q'}}{\left[\gamma_0 + \gamma_1(\frac{V}{V_0})^{q'}\right]}.$$
 (27)

Зависимость (26) удовлетворяет при $V/V_0 \rightarrow \infty$ физически обоснованному условию (17). Этого, к сожалению, нельзя сказать о зависимости, использованной в [10,13] для кристаллов из молекул p-H₂ и o-D₂ с ГПУ-структурой:

$$\Theta_{0} = \sum_{k=0}^{4} A_{k} \left(1 - \frac{V}{V_{0}} \right)^{k},$$

$$V = \frac{(V/V_{0})}{\Theta_{0}} \sum_{k=1}^{4} k A_{k} \left(1 - \frac{V}{V_{0}} \right)^{k-1}.$$
(28)

Зависимость $\Theta_0(V/V_0)$ из (28) тоже достигает максимума при $V/V_0 = 0$, но она образует минимум в области растяжения ($V/V_0 > 1$), после которого значение параметра Грюнайзена становится отрицательным, что физически некорректно. В работе [6] для кристаллов инертных газов использованы зависимости (24) и (26), в которых q' = 1/3, а величина γ_0 отрицательная. Такой выбор параметров q' и γ_0 ведет к тому, что функция $q(V/V_0)$ из (27) терпит разрыв, а функция $\Theta_0(V/V_0)$, достигнув максимума при $V/V_0 \rightarrow 0$ (где $\gamma = 0$), затем резко падает до нуля при $V/V_0 = 0$ (при этом $\gamma < 0$), что физически не вполне понятно.

В работе [14] для параметров Грюнайзена молекулярных кристаллов были предложены следующие зависимости:

$$\gamma = \gamma(1) \left(\frac{V}{V_0}\right) / \left[1 + \gamma(1) \left(1 - \frac{V}{V_0}\right)\right]$$
$$q = \left[1 + \gamma(1)\right] / \left[1 + \gamma(1) \left(1 - \frac{V}{V_0}\right)\right], \qquad (29)$$

где $\gamma(1) = \gamma(V/V_0 = 1)$. Данные зависимости, хотя и удовлетворяют условиям (21) и (22), плохи тем, что при небольшом растяжении ($V/V_0 = 1 + [1/\gamma(1)]$) терпят разрыв 2-го рода.

Таким образом, не все предложенные в литературе функциональные зависимости для $\Theta_0(V/V_0)$, $\gamma(V/V_0)$ и $q(V/V_0)$ физически обоснованы. Тем не менее используем зависимости (26)–(30) для сравнения с нашими результатами на интервале значений V/V_0 , соответствующих конденсированной фазе изучаемых веществ.

Результаты расчетов для кристаллов из изотопов водорода

Для проверки полученных формул (12), (14) и (15) были взяты молекулярные кристаллы параводорода (p-H₂) и ортодейтерия (o-D₂), имеющие ГПУ структуру. Все четыре параметра межмолекулярного потенциала (5) были определены взаимосогласованным способом в работах [2,15]. Они представлены в таблице, где также приведены значения Θ_{max} и q_{max} , рассчитанные из выражений (23). Будем полагать, что молекулы имеют квазисферическую форму, при изотермическом сжатии параметры межмолекулярного взаимодействия не меняются, и кристаллы сохраняют свою кристаллическую ГПУ-структуру: $k_n = 12$, $k_p = 0.7405$.

Заметим, что представленные в таблице параметры потенциала (5) определены из экспериментальных данных для кристаллов при T = 0 К и P = 0. Если же

Рис. 2. Зависимость Θ_0 [K], γ и q от V/V_0 для параводорода. Сплошные линии — наши расчеты. Штриховые линии зависимости (30) из [10,13]. Пунктирные линии — функции (31) из [9,10]. Штрихпунктирные линии — расчеты по зависимости (29) из [14].

их определять из данных для газовой фазы, то они будут иными, как на это и было указано в [2,15]. Например, величина b для аргона будет уже не 16.69,

а ближе к 12, что обычно и принимают для потенциала Леннарда-Джонса для изучения газово-жидкой области.

На рис. 2 показаны результаты для p-H₂: сплошные линии — расчеты автора, пунктирные — зависимости

Рис. 3. Зависимость Θ_0 [K], γ и q от V/V_0 для ортодейтерия. Сплошные линии — расчеты авторов. Штриховые линии — зависимости (32) из [10,13]. Штрихпунктирные линии — расчеты по зависимости (29) из [14], где $\gamma(1) = 2.5$.

вида [10,13]:

$$\Theta_{0}[K] = 96.6 + 241.5[1 - (V/V_{0})] + 353[1 - (V/V_{0})]^{2} - 85[1 - (V/V_{0})]^{3} + 1200[1 - (V/V_{0})]^{4},$$

$$\gamma = (V/V_{0}) \{ 241.5 + 353 \times 2[1 - (V/V_{0})] - 85 \times 3[1 - (V/V_{0})]^{2} + 1200 \times 4[1 - (V/V_{0})]^{3} \} / \Theta_{0}.$$

(30)

Пунктирные линии — функции из [9,10]

$$\Theta_{0} = 120.96 \left(\frac{V}{V_{0}}\right)^{-0.614} \exp\left\{1.7266\left[1 - \left(\frac{V}{V_{0}}\right)\right]\right\},$$

$$\gamma = 0.614 + 1.7266 \left(\frac{V}{V_{0}}\right), \ q = \frac{1.7266\left(\frac{V}{V_{0}}\right)}{\left[0.614 + 1.7266\left(\frac{V}{V_{0}}\right)\right]}.$$

(31)

Штрихпунктирные линии — расчеты по зависимости (29) из [14], где $\gamma(1) = 2.47$.

На рис. 3 показаны результаты для о-D₂: сплошные линии — расчеты автора, пунктирные линии — зависимости вида [10,13]:

$$\begin{split} \Theta_0[\mathbf{K}] &= 91.5 + 205.25[1 - (V/V_0)] + 194[1 - (V/V_0)]^2 \\ &+ 43[1 - (V/V_0)]^3 + 1115[1 - (V/V_0)]^4, \\ \gamma &= (V/V_0) \{ 205.25 + 194 \times 2[1 - (V/V_0)] \\ &+ 43 \times 3[1 - (V/V_0)]^2 + 1115 \times 4[1 - (V/V_0)]^3 \} / \Theta_0. \end{split}$$

Штрихпунктирные линии — расчеты по зависимости (29) из [14], где $\gamma(1) = 2.5$.

Из рис. 2 и 3 видно, что наши зависимости достаточно хорошо согласуются с экспериментальными. Экстраполяция экспериментальных зависимостей $\Theta_0(V/V_0)$ из [10,13] при $V/V_0 = 0$ тоже достигают максимума, но при значениях $\Theta_{0 \text{ max}} = 1779.1 \text{ K}$ — для p-H₂ и $\Theta_{0 \text{ max}} = 1648.75 \text{ K}$ — для o-D₂.

О зависимости температуры Дебая и параметров Грюнайзена от массы изотопа

Вопрос об изменении зависимостей $\Theta_0(V/V_0)$, $\gamma(V/V_0)$ и $q(V/V_0)$ при вариации изотопного состава изучается давно [2,10,13,16]. Для изменения температуры Дебая с массой изотопа часто используется выражение, которое следует из частоты колебаний гармонического осциллятора [10,13]: $\Theta_0(m_1)/\Theta_0(m_2) = (m_2/m_1)^{1/2}$. Отсюда для отношения температур Дебая водорода и дейтерия следует $\Theta_0(H_2)/\Theta_0(D_2) = 1.4135$. Однако это выражение не учитывает изменения параметров межмолекулярного потенциала при изменении массы изотопа. Из таблицы видно, что температура Дебая для изотопов

Рис. 4. Изменение изотопных отношений при различных величинах сжатия кристалла: $\Theta_0(H_2)/\Theta_0(D_2)$ — сплошная линия *1*, $\gamma(H_2)/\gamma(D_2)$ — штриховая кривая *2*, $q(H_2)/q(D_2)$ — пунктирная кривая *3*. Штрихпунктирная горизонталь отмечает значение 1.

определяется не только массой молекул, но и изменением параметров взаимодействия молекул при изменении массы изотопа.

На рис. 4 показано изменение изотопных отношений $\Theta_0(H_2)/\Theta_0(D_2)$, $\gamma(H_2)/\gamma(D_2)$ и $q(H_2)/q(D_2)$, при различных величинах сжатия кристалла. Как видно из рис. 4, отношение $\Theta_0(H_2)/\Theta_0(D_2)$ не достигает величины $(m_2/m_1)^{1/2} = 1.4135$ ни при каких сжатиях, как на это и указывалось ранее в работах [2,16].

При сжатии кристалла изотопные отношения рассчитанных функций меняются нелинейно. Отношение $\Theta_0(H_2)/\Theta_0(D_2)$ достигает максимума в точке $V/V_0 = 1.01205$, $\Theta_0(H_2)/\Theta_0(D_2) = 1.03981$ (в которой отношение $\gamma(H_2)/\gamma(D_2)$ пересекает единицу), а при $V/V_0 = 0$ достигается минимум $\Theta_0(H_2)/\Theta_0(D_2) =$ = 0.8422. Отношение $q(H_2)/q(D_2)$ всегда больше единицы, и оно достигает максимума при $V/V_0 = 0.90423$, где $q(H_2)/q(D_2) = 1.72393$, а минимума при $V/V_0 = 0$, где $q(H_2)/q(D_2) = 1.16705$. Функция $\Theta_0(H_2)/\Theta_0(D_2)$ пересекает значение 1 как при сжатии $V/V_0 = 0.844$, так и при всестороннем растяжении кристалла $V/V_0 = 1.226$.

Таким образом, отношения $\Theta_0(H_2)/\Theta_0(D_2)$, $\gamma(H_2)/\gamma(D_2)$ и $q(H_2)/q(D_2)$ определяются не только соотношением масс изотопов, но и соотношением параметров потенциала взаимодействия, которые также изменяются при вариации изотопного состава. При сжатии кристалла данные изотопные отношения меняются нелинейно, причем отношения $\Theta_0(H_2)/\Theta_0(D_2)$, $\gamma(H_2)/\gamma(D_2)$ и $q(H_2)/q(D_2)$ при сжатии до $V/V_0 = 0$ уменьшаются до значений 0.8422, 0 и 1.16 705.

Выводы

1. Разработана методика для расчета изотермической зависимости температуры Дебая и параметров Грюнайзена от величины V/V_0 . Получены предельные значения данных функций как при всестороннем растяжении кристалла до $V/V_0 = \infty$, так и при всестороннем сжатии до $V/V_0 = 0$. Показано, что не все используемые в литературе аналитические зависимости для данных функций физически корректны.

2. Рассчитаны изотермические (при $T = 0 \,\mathrm{K}$) зависимости температуры Дебая и параметров Грюнайзена от величины всестороннего сжатия для интервала: $V/V_0 = 1.3 - 0.01$, для молекулярных кристаллов из p-H₂ и o-D₂. Показано, что чем больше роль квантовых эффектов в кристалле, тем при больших значениях V/V_0 функции Θ_0 и q увеличиваются до максимумов, а функция γ уменьшается до нуля при сжатии.

3. Изучено изменение зависимости температуры Дебая и параметров Грюнайзена от величины V/V_0 при переходе от кристалла из молекул p-H₂ к кристаллу из молекул o-D₂. Показано, что изотопные отношения данных функций определяются не только соотношением масс изотопов, но и соотношением параметров потенциала взаимодействия молекул.

Автор выражает благодарность Д.Н. Кобзаренко, К.Н. Магомедову, З.М. Сурхаевой и М.М. Гаджиевой за плодотворные дискуссии и помощь в работе.

Работа выполнена при поддержке Программы Президиума РАН (проект № П-2.1) и РФФИ (грант № 12-08-96500-р-юг-а).

Список литературы

- [1] Магомедов М.Н. // ФТТ. 2003. Т. 45. Вып. 1. С. 33-36.
- [2] Магомедов М.Н. Изучение межатомного взаимодействия, образования вакансий и самодиффузии в кристаллах. М.: Физматлит, 2010. 544 с.
- [3] Гирифельдер Дж., Кертисс Ч., Берд Р. Молекулярная теория газов и жидкостей / Пер. с англ. М.: ИИЛ, 1961. 931 с.
- [4] Трунин Р.Ф. // УФН. 2011. Т. 181. Вып. 4. С. 416-422.
- [5] Михальченко В.П. // ФТТ. 2010. Т. 52. Вып. 7. С. 1444– 1452.
- [6] Рабинович В.А., Вассерман А.А., Недоступ В.И., Векслер Л.С. Теплофизические свойства неона, аргона, криптона и ксенона. М.: Изд-во стандартов, 1976. 636 с.
- 7] Магомедов М.Н. // ЖТФ. 2010. Т. 80. Вып. 9. С. 150–153.
- [8] Марченко В.И. // Письма в ЖЭТФ. 2008. Т. 87. Вып. 4. С. 245–246.
- [9] Krause J.K., Swenson C.A. // Phys. Rev. B. 1980. Vol. 21. N 6.
 P. 2533–2548.
- [10] Криокристаллы / Под ред. Б.И. Веркина и А.Ф. Приходько. Киев: Наук. думка, 1983. 526 с.
- [11] Фунтиков А.И. // Теплофизика высоких температур. 2003.
 Т. 41. Вып. 6. С. 954–969.

- [12] Freiman Yu.A., Tretyak S.M. // Fizika Nizkikh Temperatur. 2007. Vol. 33. N 6/7. P. 719–727.
- [13] Driessen A., Waal J.A., Silvera I.F. // J. Low Temper. Phys. 1979. Vol. 34. N 3/4. P. 255–305.
- [14] *Ковалев Ю.М. //* Доклады РАН. 2005. Т. 403. Вып. 4. С. 475–477.
- [15] *Магомедов М.Н. //* Теплофизика высоких температур. 2006. Т. 44. Вып. 4. С. 518–533.
- [16] *Магомедов М.Н. //* Письма в ЖТФ. 2005. Т. 31. Вып. 9. С. 50–57; 2006. Т. 32. Вып. 10. С. 40–49.