05

Критерий проявления эффекта разупрочнения кристаллических материалов при их легировании

© Б.В. Петухов

Институт кристаллографии им. А.В. Шубникова РАН, 119333 Москва, Россия e-mail: petukhov@ns.crys.ras.ru

(Поступило в Редакцию 30 августа 2012 г.)

Развита дислокационная модель эффекта разупрочнения, т.е. понижения микротвердости или предела текучести легированного материала по сравнению с исходным. Движение дислокаций, происходящее в металлах с объемно-центрированной кубической структурой, полупроводниках и многих других материалах посредством кинкового механизма, описывается с учетом влияния примесных атомов, создающих центры облегченного зарождения пар кинков и препятствия для распространения кинков. С помощью уравнения, описывающего кинетику перехода дислокации через барьер Пайерлса в легированном материале, определены условия, при которых скорость движения дислокаций повышается при введении примесей.

Введение

Легирование материалов является наиболее распространенным способом модификации их свойств. Изучению закономерностей влияния примесей на механические свойства различных материалов также уделяется большое внимание. В то время как во многих материалах добавление примесей приводит к пиннингу дислокаций и повышению их микроствердости или предела текучести, в достаточно совершенных металлах с объемно-центрированной кристаллической структурой, полупроводниках и ряде других материалов влияние легирования не столь однозначно и в некоторых условиях может приводить к противоположному эффекту [1,2]. Достаточно типичная для этого круга материалов ситуация иллюстрируется рис. 1, демонстрирующим различные типы влияния примесей. Экспериментальные кривые [3], относящиеся к более низким температурам, свидетельствуют о двоякой роли примесей, когда по мере повышения их конценирации предел текучести сначала пронижается по сравнению с чистым кристаллом, а с дальнейшим увеличением концентрации начинает превосходить исходное значение. Многочисленные примеры аналогичного поведения приведены в обзорах [1,2], оригинальных экспериментальных работах [4-7] и др. В свете дислокационных представлений о природе пластичности наиболее фундаментальным отличием упомянутых материалов является наличие в них высокого протенциального рельефа кристаллической решетки, так называемого рельефа Пайерлса. В соответствии с этим первопричину эффекта разупрочнения материалов следует искать в особенностях влияния примесных атомов на кинковый механизм движения лислокаций.

Движение дислокаций в потенциальном рельефе кристаллической решетки происходит посредством термоактивируемого образования пар кинков и их последующего разрастания вдоль системы [8–10]. Слияние независимо образовавшихся пар кинков, разросшихся до взаимных столкновений, или аннигиляция кинков завершает переход на один период решетки. Естественно ожидать, что на зарождение и движение кинков оказывают влияние дефекты строения, примеси и т.п. Возможность двоякого влияния локальных дефектов, способных быть как центрами пиннинга кинков, так и активными центрами зарождения пар кинков, отмечалась довольно давно [11,12]. Выяснению вопроса о преобладании той или иной из конкурирующих тенденций была посвящена работа [13], в которой производилось сравнение энергий активаций элементарных процессов кинкового механизма в чистом и легированном материалах. Описание более общих ситуаций, когда скорость дислокаций не описывается аррениусовским выражением (например, в переходных между различными режимами случаях),

Рис. 1. Схематическое представление возможных типов влияния легирования на предел текучести кристаллических материалов. σ_0 — предел текучести исходного материала; кривая *I* соответствует упрочнению, кривая 2 — разупрочнению. На вставке иллюстрируется зависимость предела текучести Та от концентрации атомов Re по данным [3].

Рис. 2. Иллюстрация ситуаций, приводящих к разнонаправленным тенденциям влияния атомов примеси. На верхнем рисунке атом примеси выступает в роли активатора, способстваующего образования пары кинков, на нижнем — атом примеси является центром пиннинга, препятствующего движению кинка.

требует дальнейшего развития теории движения дислокаций в кристаллических материалах при наличии локальных дефектов.

Модификация кинетики дислокаций или других одномерных систем дефектами, создающими задержки движения кинков, рассчитывалась во многих работах ([14–18] и др.). С учетом того факта [1,2,10– 12,19], что существенный, а нередко и преобладающий вклад в кинетику вносят дефекты, образующие активные центры, способствующие зарождению пар кинков, в настоящей работе будет дано исследование более общей модели. Эта модель учитывает влияние случайно расположенных центров двух типов — как зарождения (активаторов), так и торможения (стопоров) кинков. Соответствующие варианты наглядно иллюстрируются рис. 2.

Простейший подход к решению проблемы заключается в перенормировке дефектами частоты зарождения кинков и скорости их движения. Однако в работе [20] было показано, что влияние локальных дефектов по мере усиления вносимых ими искажений исходного материала может приводить к существованию режимов кинетики, для которых такой подход неприменим. В общем случае на протекание процесса существенное влияние оказывают флуктуации пространственного распределения дефектов и распределения длительности задержек на них, так что расчет кинетики требует более полного статистического описания. Одним из приемов преодоления трудностей, связанных с существенной стохастичностью проблемы, является многомасштабное численное моделирование методом Монте-Карло (см., например, [15]). Цель настоящей работы состоит в развитии более простого аналитического подхода, опирающегося на методы теории вероятности.

1. Кинковая модель преодоления кристаллического рельефа

Скорость движения дислокаций V_d в материалах с высоким кристаллическим рельефом определяется временем смещения t_a на один период решетки h и равна $V_d = h/t_a$. Таким образом, основной подлежащей определению характеристикой является время преодоления барьера Пайерлса или, другими словами, время t_a ухода дислокации из одной долины кристаллического рельефа. В теорию кинкового механизма, относящуюся к чистым материалам, закладываются 2 параметра: частота независимого спонтанного образования зародышей пар кинков в единицу времени на единицу длины системы J_0 и скорость движения кинков v. Все остальные параметры, относящиеся к конкретному материалу и условиям эксперимента, такие как температура, движущая сила, энергии активации элементарных процессов и т.п., входят в задачу неявно через два указанных основных. Статистическое рассмотрение [8] показывает, что при постоянных J_0 и v с точностью до численного коэффициента порядка единицы время перехода определяется выражением

$$t_a \approx t_0 = (vJ_0)^{-1/2}.$$
 (1)

Нам, однако, при расчете влияния на скорость дислокаций примесей понадобится принимать во внимание возможную зависимость частоты рождения пар кинков от времени.

Наиболее удовлетворительным подходом, в явном виде учитывающим все стадии процесса от зарождения кинков до их аннигиляции, является модель Колмогорова [21], в которой чрезвычайно просто решается статистическая проблема слияния случайно рождающихся в пространстве и времени зародышей при любой зависимости от времени t частоты образования зародышей J(t). Вкратце воспроизведем соответствующее решение.

Примем момент времени, соответствующий началу процесса перехода, равным нулю t = 0. Обозначим вероятность рассматриваемой точке не быть заметенной кинком, рожденным по какую-либо одну сторону от этой точки ко времени t как $Q_0(t)$. По Колмогорову [21] $Q_0(t)$ вычисляется как вероятность не возникнуть зародышу на расстоянии, меньшем длины пробега за время t, т.е. vt. Если вероятность образоваться зародышу в малом интервале времени Δt_i на длине $l(t_i) = v(t - t_i)$ есть $J(t_i)l(t_i)\Delta t_i$, а вероятность не образоваться со-ответственно есть $1 - J(t_i)l(t_i)\Delta t_i$, то вероятность не возникнуть зародышу в течение промежутка времени $t = \sum \Delta t_i$ равна произведению

$$\prod_{i} [1 - J(t_{i})l(t_{i})\Delta t_{i}] \approx \exp\left[-\sum_{i} J(t_{i})l(t_{i})\Delta t_{i}\right]$$
$$\approx \exp\left[-\int_{0}^{t} J(t')v(t-t')dt'\right]. \quad (2)$$

При постоянной частоте рождения кинков $J(t) = J_0$ получаем $Q_0(t) = \exp(-J_0 v t^2/2)$. Вероятность точке не быть захваченной ни с той, ни с другой стороны есть $Q_0^2(t)$, а перешедшая через барьер ко времени t доля дислокации равна, следовательно,

$$P_0(t) = 1 - Q_0^2(t) = 1 - \exp(-J_0 v t^2).$$
 (3)

С помощью этой формулы рассчитывается среднее время перехода дислокации на период решетки в чистом материале

$$t_{av0} = \int_{0}^{\infty} t \, \frac{dP_0}{dt} dt = \int_{0}^{\infty} Q_0^2(t) dt = \frac{\sqrt{\pi}}{2} t_0, \qquad (4)$$

что отличается от приведенной в (1) оценки лишь несущественным для дальнейшего численным множителем порядка единицы. Время перехода рассчитывается в подходе Колмогорова для любой размерности пространства и любой зависимости от времени частоты рождения зародышей нового состояния. Формула Лоте-Хирта (1) является частным случаем формулы Колмогорова, относящимся к одномерной системе-дислокации.

2. Модификация кинкового механизма дефектами

В развиваемой ниже теории предполагается, что влияние локальных дефектов может быть сравнимо с ролью собственного кристаллического рельефа материала, но не является настолько сильным, чтобы полностью разрушить кинковый механизм движения дислокаций. Другими словами, принимается, что скорость дислокации и при наличии дефектов по-прежнему по порядку величины совпадает со временем перехода между двумя смежными долинами кристаллического рельефа. Такая ситуация отвечает дефектам, энергия взаимодействия которых с дислокацией меньше или порядка энергии образования кинка, и сравнительно низкой их концентрации, когда влиянием комплексов можно пренебречь.

Рассмотрим последовательно модификацию элементарных актов кинкового механизма локальными дефектами. В первую очередь учтем дополнительное к свободному образованию пар кинков их зарождение на дефектах-активаторах, имеющих среднюю плотность на единицу длины системы n_a и частоту срабатывания I_a . Тогда частоту свободного образования пар кинков J_0 следует дополнить частотой зарождения на активаторах $n_a I_a \exp(-I_a t)$ и подставить в (2) $J(t) = J_0 + n_a I_a \exp(-I_a t)$. В этом случае односторонняя вероятность данной точке системы остаться в первоначальной долине рельефа до времени t (обозначим ее $Q_a(t)$) убывает со временем по закону

$$Q_{a}(t) = \exp\left\{-\int_{0}^{t} dt' J(t')v(t-t')\right\}$$

= $\exp\left\{-vtI(t) + vI_{1}(t)\right\}.$ (5)

Здесь

$$\begin{split} I(t) &= \int_{0}^{t} J(t')dt' = J_{0}t + n_{a}[1 - \exp(-I_{a}t)], \\ I_{1}(t) &= \int_{0}^{t} J(t')t'dt' \\ &= \frac{J_{0}t^{2}}{2} + \frac{n_{a}}{I_{a}}[1 - (I_{a}t + 1)\exp(-I_{a}t)]. \end{split}$$

Учтем теперь также и наличие дефектов-стопоров, тормозящих движение кинков, со средней плотностью на единицу длины дислокации *n*. Среднее время задержки на дефекте-стопоре обозначим τ . Таким образом, в дополнение к двум фундаментальным параметрам, характеризующим чистый материал J_0 и v, для описания легированного материала следует ввести в расчет еще 4: плотности активаторов n_a и стопоров *n*, а также частоту срабатывания активаторов I_a и среднее время задержки на стопоре τ . Эти 6 фундаментальных параметров и определяют в рамках рассматриваемой далее модели влияние легирования в наиболее обобщенном виде.

Вычислим одностороннюю вероятность Q(t) какойлибо точке не перейти в новую долину за счет рождения кинков с какой-либо одной стороны от рассматриваемой точки (для определенности справа, условно представляя дислокацию расположенной горизонтально) ко времени t. Метод расчета Q(t) развит в работах [17,18]. Суть его состоит в установлении связи между функцией Q(t)в данной точке и ей же за ближайшим дефектомстопором с последующим учетом всевозможных положений этого стопора. Простое обобщение приведенного в [17,18] расчета, учитывающее наличие активаторов, дает следующее уравнение для Q(t) (детали вывода будут приведены в отдельной публикации):

$$\frac{d^2 Q(t)}{dt^2} + \left[nv + 1/\tau + vI(t) \right] \frac{dQ(t)}{dt} + \left[Jv + vI(t)/\tau \right] Q(t) = 0.$$
(6)

Начальными условиями для Q(t) являются значения при t = 0 самой функции и ее производной

$$Q(t)|_{t=0} = 1, \quad \frac{dQ(t)}{dt}\Big|_{t=0} = 0.$$

Уравнение (6) описывает самые разнообразные сценарии кинетики перехода. Некоторые из них были описаны

ранее в рамках других подходов. В частности, как было показано в [18], влияние относительно слабых дефектовстопоров, что количественно может быть выражено условием $\tau \ll t_{av0}$, сводится к простой перенормировке скорости движения кинков $v_{av} = v/(1 + nv\tau)$. Это объясняется большой длиной пробега кинков в этой ситуации, имеющей следствием усредненное влияние дефектов. В общем случае такого самоусреднения не происходит, и существенны флуктуации в хаотическом распределении дефектов.

Решение уравнения (6) позволяет рассчитать зависимость от плотности примесей среднего времени перехода

$$t_{av} = \int_{0}^{\infty} Q^2(t) dt.$$

Для выяснения условий возникновения эффекта разупрочнения представляет интерес поведение t_{av} при малых значениях концентрации примесей. Найдем изменение бездефектной кинетики перехода $Q_0(t) = \exp(-t^2/2)$ при появлении небольшого количества дефектов $Q(t) = Q_0(t) + \delta Q(t)$ с помощью уравнения (6).

Для упрощения последующих формул будем измерять время в единицах $t_0 = 1/(J_0 v)^{1/2}$ и введем безразмерные параметры $n(v/J_0)^{1/2} \rightarrow n$, $\tau/t_0 \rightarrow \tau$, $I_a t_0 \rightarrow I_a$, $r = n/n_a$. Действуя по теории возмущений, получаем уравнение для $\delta Q(t)$:

$$\frac{d^2 \delta Q(t)}{dt^2} + (1/\tau + t) \frac{d \delta Q(t)}{dt} + (1 + t/\tau) \delta Q(t) = n\varphi(t), \qquad (7)$$

$$\varphi(t) = \left\{ t + \left[t - 1/\tau - (t - 1/\tau + I_a) \exp(-I_a t) \right] / r \right\}$$
$$\times \exp(-t^2/2).$$

Решением уравнения (7) является

$$\delta Q(t) = n \exp(-t^2/2)$$

$$\times \int_{0}^{t} dt' \int_{0}^{t'} dt'' \varphi(t'') \exp(t'^2/2 - t'/\tau - t''^2/2 + t''/\tau).$$
(8)

Зная $\delta Q(t)$, можно найти интересующее нас поведение концентрационной зависимости времени перехода на начальном этапе легирования

$$\frac{dt_{av}}{dn}\Big|_{n=0} = 2\int_{0}^{\infty} dt Q_0(t) \delta Q(t) = f_1(\tau) + f_2(I_a).$$
(9)

Здесь

$$f_{1}(\tau) = -\left(1 + \frac{1}{r}\right) + \sqrt{\pi} \int_{0}^{\infty} dt \exp\left(\frac{t^{2}}{2} - \frac{t}{\tau}\right) \operatorname{erfc}(t)$$

$$+ \frac{\pi}{\sqrt{2\tau}} \exp\left(\frac{1}{2\tau^{2}}\right) \int_{0}^{\infty} dt \exp\left(\frac{t^{2}}{2} - \frac{t}{\tau}\right) \operatorname{erfc}(t)$$

$$\times \left[\operatorname{erf}\left(\frac{t}{\sqrt{2}} - \frac{1}{\sqrt{2\tau}}\right) + \operatorname{erf}\left(\frac{1}{\sqrt{2\tau}}\right)\right]$$

$$\approx 1 - \frac{1}{r} + \frac{dt_{\infty}\tau - c}{\tau + c}, \ c \approx 0.51, \ dt_{\infty} \approx -0.75354.$$
(10)

Последнее равенство двет простую аппроксимацию предшествующего громоздкого выражения, константа dt_{∞} есть значение $dt_{av}/dn|_0$ при значениях параметров $\tau = \infty$, $I_a = \infty$, r = 1. При достаточно большой частоте срабатывания активаторов $I_a \to \infty$ формула (10) полностью определяет величину $dt_{av}/dn|_0$. Если же за время перехода срабатывают не все активаторы, то в $dt_{av}/dn|_0$ имеется аддитивный вклад

$$f_2(I_a) = \frac{\sqrt{\pi}}{rI_a} \left[1 - \exp\left(\frac{I_a^2}{4}\right) \operatorname{erfc}\left(\frac{I_a}{2}\right) \right].$$
(11)

В (10) и (11)

$$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} dt \exp(-t^2), \quad \operatorname{erf}(x) = 1 - \operatorname{erfc}(x)$$

— интеграл вероятности (см., например, [22]).

При сравнительно низкой частоте зарождения кинков на активаторах І_а и большом времени задержек кинков на стопорах au рассчитанная производная $dt_{av}/dn|_0$ оказывается положительной и, таким образом, в этой области параметров легирование приводит к увеличению времени смещения дислокации на период решетки и понижению ее скорости по сравнению с чистым материалом. Однако для более высоких значений І_а производная $dt_{av}/dn|_0$ меняет знак, становясь отрицательной, что свидетельствует об уменьшении времени элементарного скачка t_{av} и повышении скорости дислокации. Следовательно, условием возникновения эффекта разупрочнения можно считать обращение производной $dt_{av}/dn|_0$ в нуль, что приводит к определенному соотношению между основными параметрами задачи. Численное решение уравнения $dt_{av}/dn|_0 = f_1(\tau) + f_2(I_a) = 0$, получаемое обращением функции $f_2(I_a)$, аппроксимируется выражением (r = 1)

$$I_{ac}t_0 = f_2^{-1} \left(-f_1(\tau) \right) \approx \frac{1.1\tau/t_0}{1 + 1.56\tau/t_0}, \qquad (12)$$

при записи которого использованы первоначальные размерные параметры. Кроме того, рассмотрен наиболее интересный случай, когда роль активаторов и стопоров

Рис. 3. Диаграмма, изображающая границу проявления эффекта разупрочнения.

играют одни и те же примеси, но расположенные в различных долинах кристаллического рельефа, как это иллюстрируется рис. 2, так что $n_a = n$.

Рис. 3 иллюстрирует найденную таким образом границу между областями значений параметров, в которых эффект разупрочнения имеется или, напротив, отсутствует. В области I конкуренция роли активаторов и стопоров сравнимой плотности приводит к характерному немонотонному виду кривых с преобладанием ускорения кинетики при относительно небольшой плотности дефектов и преимущественным замедлением кинетики при более высокой их плотности. В области II легирование приводит к упрочнению во всей области концентраций примесей.

3. Концентрационная зависимость времени смещения

Полученные численным решением уравнения (6) концентрационные зависимости среднего времени смещения дислокации на период решетки в области проявления эффекта разупрочнения иллюстрируются на рис. 4 для нескольких значений длительности задержек кинков на атомах примеси. С целью получить более общее наглядное представление о количественных закономерностях влияния легирования представляет интерес найти явные аналитические аппроксимации решений уравнения (6). В качестве такой аппроксимации можно использовать, например, какого-либо типа интерполяцию между асимптотиками решения при малой и большой плотностях примесей. При большой плотности примесей влиянием активаторов можно пренебречь, и соответствующая асимптотика была найдена в работе [18]. Поведение концентрационной зависимости времени перехода при низкой плотности примесей характеризуется рассчитанной в настоящей работе производной $dt_{av}/dn|_0$. В качестве варианта интерполяции между низким и высоким значениями плотностей примесей можно использовать

формулу

$$t_{av}(n) \approx \frac{\sqrt{\pi}}{2} \frac{1}{1 - (dt_{av}/dn)_0 n} + \chi(n,\tau) \frac{0.5n\tau}{\tau + 2n}.$$
 (13)

Здесь

$$\begin{split} \chi(n,\tau) &= 1 + \frac{p_1}{1+p_3n} + \frac{p_2}{(1+p_3n)^2} - \frac{1+p_1+p_2}{(1+p_3n)^3},\\ p_1 &= -\frac{0.2814\tau}{1+0.05365\tau^{1.166}}, \ p_2 &= \frac{0.17\tau^{3/2}}{1+0.0272\tau^{3/2}},\\ p_3 &= \frac{0.07\tau^{0.64} + 0.0024\tau^{5/2}}{1+0.0127\tau^{5/2}}, \end{split}$$

а $(dt_{av}/dn)_0$ дается формулой (10).

Описываемые выражением (13) закономерности показаны на рис. 4 штриховыми линиями и достаточно удовлетворительно передают характер конкуренции между упрочняющим и разупрочняющим влиянием легирования. Аппроксимации типа (13) могут представлять желаемое обобщение формулы (1), описывающей чистые материалы, на легированные материалы.

Рис. 4. Иллюстрация конценирационной зависимости среднего времени смещения дислокации на период решетки для нескольких значений времени задержки кинков на стопорах и $I_a = \infty$: $\tau = t_0$ (1), $\tau = 5t_0$ (2), $\tau = 20t_0$ (3), $\tau = 50t_0$ (4), $\tau = 100t_0$ (5). Штриховые линии показывают приближенную зависимость (13).

Заключение

Построенная в настоящей работе теория качественно объясняет неоднозначный характер влияния легирования на пластичность кристаллических материалов, могущего приводить как к повышению, так и понижению их микротвердости и пределов текучести. В основу теории положена модель, описывающая движение дислокаций в материале, содержащем хаотически расположенные локальные дефекты или примеси, одна разновидность которых облегчает образование пар кинков, а другая тормозит их движение. Предлагаемая теория позволяет вывести критерий, показывающий, в какой области параметров следует ожидать, что введение примесей будет приводить к повышению микротвердости или предела текучести материала, а в какой, напротив, к их понижению, т. е. к эффекту разупрочнения.

Критерий выражается через основные параметры элементарных взаимодействий дислокации и кинков с примесными атомами: частот образования пар кинков на примесях и время задержки кинков. Этот универсальный критерий может быть пересчитан на другие параметры типа температуры, напряжения и т.п. для конкретных материалов в рамках частных моделей, различных для металлов с ОЦК-структурой или полупроводников. В качестве примера отметим следующее. Поскольку определяющие кинетику элементарные процессы, как правило, термически активируемые, входящие в теорию параметры должны иметь температурные зависимости аррениусовского типа:

$$J_0 = J_{0*} \exp(-E_0/kT), \ I_a = I_{a0} \exp(-E_a/kT),$$
$$v = v_* \exp(-E_m/kT), \ \tau = \tau_* \exp(E/kT),$$

где E_0, E_a, E_m и E — соответствующие энергии активации, а J_{0^*}, I_{a0}, v_* и τ_* — некоторые предэкспоненциальные множители. Тот факт, что для представленных на вставке к рис. 1 данных эффект разупрочнения соответствует более низким температурам, может объясняться соотношением энергий активации $E_a < \frac{1}{2}(E_0 + E_m)$, так как в этом случае определяющий параметр $I_a/\sqrt{J_0v}$ будет расти с понижением температуры. В результате материальные параметры будут соответствовать области проявления эффекта разупрочнения в соответствии с предлагаемым критерием.

Список литературы

- Pink E., Arsenault R.J. // Progr. Mater. Sci. 1979. Vol. 24. N 1. P. 1–50.
- [2] *Петухов Б.В.* // Кристаллография. 2007. Т. 52. Вып. 1. С. 113–124.
- [3] Mitchell T.E., Raffo P.L. // Can. J. Phys. 1967. Vol. 45. N 2.
 P. 1047–1062.
- [4] Солдатов В.П., Нацик В.Д., Диулин А.Н., Кириченко Г.И. // ФНТ. 2000. Т. 26. Вып. 2. С. 214–224.
- Mitchell T.E., Anderson P.M., Baskes M.I., Chen S.P., HoaglandR.G., Misra A. // Philos. Mag. 2003. Vol. 83. N 11. P. 1329–1347.
- [6] López-Chipres E., Mejia I., Maldonado C., Bedolla-Jacuinde A., El-Wahabi M., Cabrera J.M. // Mater. Sci. Eng. A. 2008. Vol. 480. N 1. P. 49–55.
- [7] Gupta C., Chakravartty J.K. // Phys. Stat. Sol. A. 2009. Vol. 206. N 4. P. 685–690.
- [8] Hirth J., Lothe J. // Theory of Dislocations. 2nd edn, NY: Wiley-Interscience, 1982 / Пер. Д. Хирт, И. Лоте. Теория дислокаций. М.: Атомиздат, 1972. 598 с.

- [9] Messerschmidt U. // Dislocation Dynamics During Plastic Deformation. Springer Series in Material Science (Eds: R. Hill, C. Jagadish, R.M. Osgood, Jr. J. Parisi, Z. Wang, H. Warlimont). Heidelberg. Dordrecht, London, NY: 2010. 464 p.
- [10] Petukhov B.V. In: Crystal Lattice Defects and Dislocation Dynamics / Ed. R.A. Vardanian. Nova Science Publishers, Inc. Huntington, NY: 2000. P. 71–108.
- [11] Петухов Б.В. // ФТТ. 1971. Т. 13. Вып. 5. С. 1445–1449.
- [12] Sato A., Meshii V. // Acta Metall. 1973. Vol. 21. N 6. P. 753– 768.
- [13] Петухов Б.В. // ФММ. 1983. Т. 56. Вып. 6. С. 1177–1185.
- [14] Петухов Б.В. // ФТТ. 1999. Т. 41. Вып. 11. С. 1988–1993.
- [15] Deo C.S., Srolovitz D.J., Cai W., Bulatov V.V. // J. Mech. Phys. Sol. 2005. Vol. 53. N 6. P. 1223–1247.
- [16] Gauthier M.G., Herrick J., Bechhoefer J. // Phys. Rev. Lett. 2010. Vol. 104. P. 218 104.
- [17] Петухов Б.В. // ФТТ. 2012. Т. 54. Вып. 6. С. 1211–1214.
- [18] Петухов Б.В. // ЖЭТФ. 2012. Т. 141. Вып. 6. С. 1130–1136.
- [19] Trinkle D.R., Woodward C. // Science. 2005. Vol. 310.
 P. 1665–1667.
- [20] Петухов Б.В. // ФТТ. 1983. Т. 25. Вып. 6. С. 1822–1829.
- [21] Колмогоров А.Н. // Изв. АН СССР. Сер. Мат. 1937. Т. 3. Вып. 1. С. 355–359.
- [22] Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. Элементарные функции. М.: Наука, 1981. 800 с.