13

Разработка специализированного изотопного масс-спектрометра для неинвазивной диагностики инфицированности человека Helicobacter Pylori

© Н.М. Блашенков,¹ Е.С. Шешеня,^{2,3} С.М. Соловьев,¹ Л.Н. Галль,³ В.М. Саченко,⁴ И.В. Заруцкий,³ Н.Р. Галль^{1,5}

¹ Физико-технический институт им. А.Ф. Иоффе РАН,

194021 Санкт-Петербург, Россия

² Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

³ Институт аналитического приборостроения,

190103 Санкт-Петербург, Россия

⁴ ELMITEK Gmbh, Germany

⁵ ООО Технан,

199155 Санкт-Петербург, Россия e-mail: gall@ns.ioffe.ru

(Поступило в Редакцию 31 октября 2012 г.)

Проведена разработка специализированного изотопного масс-спектрометра, предназначенного для неинвазивной диагностики инфицированности человека Helicobacter Pylori с помощью изотопного дыхательного теста. Выполнен расчет низкоаберрационного масс-анализатора, разработана специализированная система напуска, позволяющая избегать эффектов "памяти" прибора, создан малогабаритный приемник ионов. Массспектрометр изготовлен, проведено его тестирования. Точность измерений изотопных соотношений для ${}^{13}C/{}^{12}C$ составила 1.7 ${}^{0}/_{00}$, в отношении изотопов кислорода ${}^{16}O/{}^{18}O - 2.2 {}^{0}/_{00}$. Предварительное медицинское тестирование показало пригодность масс-спектрометра для проведения требуемой диагностики.

Введение

Инфицированность человека Helicobacter Pylori (HP), открытая относительно недавно, рассматривается сейчас как значимая медицинская проблема; именно за открытие этого возбудителя группе австралийских врачей была присуждена Нобелевская премия по медицине 2004 г. Осеменение НР слизистой желудка выступает как важнейший фактор в развитии гастритов и язвенной болезни, а надежная диагностика такой инфицированности — важная медицинская проблема и залог эффективной терапии. Несмотря на существование ряда методов диагностики [1], "золотым стандартом" во всем мире признан изотопный дыхательный тест, рекомендованный ВОЗ: он единственный гарантирует практическое отсутствие как ложноположительных, так и ложноотрицательных результатов, причем, что особенно важно, он сохраняет свою работоспособность в условиях проведения эрадикационной терапии и служит критерием ее эффективности [2]. Неинвазивная диагностика резко уменьшает риск ятрогенного распространения инфекции, является не травматической и повышает готовность пациентов проходить обследование.

Изотопный дыхательный тест состоит в приеме пациентом рег оз наибольшего количества раствора карбамида, меченного стабильным изотопом C^{13} . В норме содержание изотопа C^{13} в углероде составляет около 0.01 доли, в препарате его количество повышается на 30-40% и составляет 1.3-1.4% от основного изотопа C^{12} . При

наличии хеликобактерной инфекции карбамид разлагается в желудке, изотоп C^{13} всасывается, окисляется до CO_2 и выделяется легкими. По наличию избытка C^{13} в выдыхаемом человеком углекислом газе судят о наличии инфицированности и степени осеменения желудка.

Постановка задачи

Для реализации теста необходим прибор, позволяющий надежно измерять превышение изотопного соотношения C^{13}/C^{12} над стандартом в диапазоне $1-2^{0}/_{00}$. Поскольку само содержание изотопа C13 тоже не велико (~1%), то реальные требования к точности оказываются довольно высокими — ~ 10^{-5} . На сегодняшний день такими возможностями обладают или специализированные изотопные масс-спектрометры [3], или оптические ИК-спектрометры; приборы обоих типов имеют свои преимущества и недостатки. Масс-спектрометрические измерения более устойчивы к примесям, требуют менее сложной пробоподготовки и использования дорогостоящих реактивов; они лучше адаптированы к возможностям медицинской индустрии России.

В 70-80-х годах прошлого столетия СССР был одним из лидеров в области масс-спектрометрических разработок, которые президент АН СССР академик А.П. Александров считал одной из тех областей техники, которые определяют стратегическое превосходство или, наоборот, отставание страны в международном соревновании. На сегодня в результате деятельности перестроечных

Характеристика	
Разрешающая способность	60
Диапазон масс	44, 45, 46
Изотопический порог чувствительности не ниже	10^{-4}
Превышение концентрации C ¹³ над фоновым значением, имеющее диагностическое значение	$2^{0}/_{00}$
Значение среднеквадратического отклонения (СКО) случайной составляющей	
относительной погрешности единичного определения изотопного отношения не выше	$1.7^{0}/00$
Габариты прибора, mm	1000 imes 800 imes 400
Вес прибора с постоянным магнитом, kg	60
Потребляемая мощность с учетом управляющего компьютера, W	900
Питание от сети переменного тока, V	220

Основные характеристики масс-спектрометра ТЕХНАН МИ-150 "Хеликомасс"

и постперестроечных правительств этот потенциал в значительной мере растрачен, и при разработке приходилось многие вопросы решать как в первый раз. Тем не менее основой разработки был значительный опыт создания масс-спектрометров, имевшийся в ФТИ им. А.Ф. Иоффе РАН, в ИАП РАН, и опыт производства высоковакуумных приборов ООО Технан.

Для обеспечения выполнения масс-спектрометром его основной функции — реализации изотопного дыхательного теста разрабатываемый прибор, получивший название ТЕХНАН МИ-150 "Хеликомасс", должен был обладать аналитическими характеристиками, перечисленными в первый строках таблицы. Сумма указанных аналитических характеристик полностью обеспечивает реализацию изотопного дыхательного теста по стандарту, рекомендованному ВОЗ. Дополнительными требованиями, вытекающими из специфики медицинского использования масс-спектрометра, является достаточно высокая экспрессность проведения анализа и высокая надежность его узлов, исключающая использование сложных, трудно настраиваемых или потенциально ненадежных узлов: его конструктивное исполнение и применяемые методики должны быть рассчитаны на использование персоналом, обладающим относительно невысокой технической квалификацией. Кроме того, было крайне желательно обойтись без использования покупных реактивов или свести их к минимуму.

Масс-анализатор и высоковакуумная откачка

Масс-спектрометр построен как однокаскадный статический магнитный прибор с радиусом 125 mm, углом поворота 90° и неравноплечей ионно-оптической схемой, представленной на рис. 1. Для расчета использовалась современная теория статических массанализаторов, включающая учет как горизонтальной, так и вертикальной фокусировки ионного пучка. Использовалась целевая функция минимизации суммы геометрических и хроматической аберраций, обеспечивающая максимально возможный аксептанс масс-анализатора при минимизации аберрационного уширения линии за счет правильно подобранных параметров источника ионов и их согласовании с масс-анализатором. Увеличение масс-анализатора составляет M = 1.25, дисперсия по массе Dm = 1.72mm/1% $\Delta M/M$, разрешающая сила ~ 100 , пропускание $\sim 90\%$. Верифицирующие расчеты проводились путем численного моделирования с использованием программы SIMION 7.0.

Масс-анализатор собран по стандартной схеме на постоянном диспергирующем магните с магнитодвижущими элементами из Nd–Fe–B; как вариант предусмотрена возможность использования электромагнита. Высоковакуумная откачка осуществляется из области вблизи источника ионов; для улучшения откачки области приемника параллельно камере анализатора установлен вакуумный патрубок диаметром 25 mm.

Аналитическая камера прибора изготовлена из нержавеющей стали с использованием фланцев в стандарте Conflat. Высоковакуумная откачка прибора осуществляется полностью безмаслянной насосной системой Pfeiffer vacuum 071E, включающей турбомолекулярный насос с производительностью 601/s и мембранный насос для предварительной откачки. Вакуум в приборе измеряется лампой ПММ-32 и при отсутствии напуска пробы составляет 10^{-7} Pa, в рабочем режиме — 10^{-4} Pa; система напуска откачивается отдельным безмасляным

Рис. 1. Ионно-оптическая схема масс-анализатора МИ-150 "Хеликомасс": I — источник ионов, 2 — приемник ионов, 3 — постоянный диспергирующий магнит, 4 — первое плечо $L_1 = 100$ mm, 5 — входной угол 26°, 6 — радиус поворота ионов, 125 mm, 7 — угол поворота ионов, 90°, 8 — второе плечо $L_2 = 220$ mm.

мембранным насосом до остаточного давления 10² Ра. С учетом желательности наращивания возможностей прибора его аналитическая часть изготовлена во фтороустойчивом исполнении и приняты меры для исключения водородного обмена с элементами его конструкции. Прибор скомпонован в виде напольного моноблока, внутри которого размещаются вакуумно-аналитическая, электронная части прибора и баллоны с газовым стандартом.

Источник и приемник ионов

62

Источник ионов с электронным ударом построен по схеме Нира с использованием горизонтальных отклоняющих пластин, расположенных в области между пластинами выходного коллиматора. Магнитное поле величиной примерно 0.3 T создается магнитами из Sm-Coсплава, имеющими малую величину температурного дрейфа, размещенными вне вакуумной камеры и допускающими юстировку. Со стороны ионизационной камеры, противоположной катоду, расположен коллектор, на который подается электрический потенциал, притягивающий электроны (~ 30 V) для недопущения вторичной эмиссии; коллектор перехватывает ~ 95% всего тока катода. В качестве катода используется U-образная иридиевая проволока с нанесенной на поверхность окисью иттрия. В рабочем режиме ток катода составляет примерно 10 μ A, а температура источника ионов ~ 100°C. Для получения высокой точности изотопных измерений необходимо использовать специальный алгоритм настройки источника, который будет описан в отдельной работе.

Приемник ионов трехколлекторный, рассчитанный на массовые числа 44, 45 и 46, с независимыми предварительными усилителями, смонтированными в виде единого блока. Коллекторы представляют собой цилиндры Фарадея глубиной 10 mm, смонтированные на керамическом основании, они заведомо шире ионного пучка. Для предотвращения роли вторичной эмиссии установлен специальный антидинатронный электрод; кроме того, в вертикальной плоскости установлены постоянные магниты, отклоняющие вторичные электроны и не позволяющие им выйти за пределы коллектора.

Выбор трехколлекторной системы регистрации основан на использовании молекулярного иона двуокиси углерода: массовое число 44 соответствует его основной изотопной модификации $C^{12}O^{16}O^{16}$; массовое число 45 — сумме изотопных модификаций $C^{13}O^{16}O^{16}$ и $C^{12}O^{16}O^{17}$, вклад последней учитывается при расчете отношения C^{13}/C^{12} по экспериментальным данным. Наконец, массовое число 46 — это модификация $C^{12}O^{16}O^{18}$ и практически незначимым добавкам изотопных модификаций вещества, содержащих два минорных изотопа [4]. При медицинской диагностике только массовые числа 44 и 45 используются как носители аналитической информации об изотопном соотношении C^{13}/C^{12} , а массовое

число 46 используется как тестовый показатель наличия в выдохе следов алкоголя, что позволяет отбраковывать результаты, полученные при превышении этим пиком порогового уровня в $2^{0}/_{00}$ от общего содержания CO₂ в выдохе пациента, т. е. от интенсивности пика с массовым числом 44. Прибор работает в масс-спектрографическом режиме с одновременной регистрацией пиков на все три коллектора; для настройки и юстировки работа переводится в масс-спектрометрический режим с разверткой ускоряющим напряжением.

Специализированная система ввода пробы

Специализированная система ввода пробы и алгоритм ее использования являются важнейшими характеристиками масс-спектрометра, обеспечивающими как саму возможность его медицинского использования, так и показатели назначения. Ввод пробы базируется на использовании натекателя Мамырина [4], обеспечивающего перепад давлений от атмосферного до высокого вакуума; натекатель обладает ручным управлением и настраивается при юстировке прибора. Вакуумная схема системы ввода пробы представлена на рис. 2. Она представляет собой манифолд из латуни, к которому подключены краны для откачки и подачи газа.

При генерации пробы пациент делает длинный выдох в одноразовую кювету, в качестве которой используется стандартная пенициллиновая бутылочка, которая

Рис. 2. Вакуумная схема системы ввода пробы. Пробоотборная игла (1), выход к форвакуумной откачке (2), резервный заглушенный вход (3), трубопровод для подачи пробы в камеру источника ионов (4), баллон для подачи эталона (5) и азота (6) и через нормально закрытые электромагнитные вентили (7), натекатель Мамырина для подачи пробы в камеру ионизации (8), коммутационный корпус (9).

затыкается резиновой пробкой; никакой больше пробоподготовки не проводится. Кювета одевается резиновой пробкой на иглу системы ввода пробы, и проба втягивается в систему, поступая на вход натекателя Мамырина, а оттуда непосредственно в камеру ионизации ионного источника.

Для обеспечения отсутствия памяти прибора используется многоходовый алгоритм очистки системы ввода: после отсоединения кюветы она продувается сжатым сухим азотом, потом откачивается до давления 10^2 Ра, затем снова продувается и снова откачивается. Время одного цикла "очистка—измерение" составляет 7 min. Тестирование показало, что после такой очистки "память" прибора не превышает $0.5^{0}/_{00}$ по изотопу C¹³.

Электронная часть прибора

Прибор полностью автоматизирован, ручными являются только механическая подача пробы и настройка прибора. Питающая и управляющая электроника имеет блочную структуру, позволяющую ее легко изменять и наращивать. Управление осуществляется от персонального компьютера (PC) через систему с распределенным интеллектом: микропроцессорное устройство для сбора информации и выдачи управляющих сигналов в режиме реального времени отделено от PC с системой Windows и связано с ним по USB-порту. Прибор управляется единым лицензионно-чистым первичным ПО, написанным под Windows и пригодным как для бытового, так и для промышленного компьютера. Алгоритм управления системой напуска и процедурой медицинских измерений является составной частью ПО.

Тестирование прибора на показатели назначения

Важнейшим показателем назначения прибора является точность измерения изотопного отношения С¹³/С¹², получаемая в режиме последовательного измерения пробы и эталона. Тестирование проводилось путем многократного последовательного измерения изотопного соотношения углерода в эталоне и в пробе. В качестве первого использовался коммерческий углекислый газ медицинской чистоты, в качестве второго — выдох оператора, проводившего тестирование. Измерения проводились последовательно с использованием алгоритма очистки системы напуска, применяемого при медицинских измерениях, один цикл измерений эталон-проба занимал 15 min. В соответствии с принятым в России стандартом использовался набор из 21 измерения. Одновременно в дополнение мониторировались измерения изотопного соотношения в выдохе оператора. Результаты этих измерений представлены на рис. 3.

Представленные на графике величины изотопного отношения *R* рассчитывались по формуле, обычно приня-

Рис. 3. Изотопные соотношения C¹³/C¹² в эталоне (1) и в выдохе оператора Ш. (2) при последовательных измерениях и использованием алгоритма продувки и откачки системы напуска, применяемой при медицинских измерениях. Время одного цикла измерения — 15 min.

той в изотопных измерениях:

$$R = [I(45)/33]/[I(44) + I(45)/33],$$
(1)

где I(44) и I(45) — интенсивность сигнала для массовых чисел 44 и 45 соответственно, а 33 — отношение измерительных сопротивлений в приемных электрометрах для обоих пиков. В этих расчетах вклад минорного изотопа O^{17} в измеряемую величину игнорируется, так как его учет создает поправку, заведомо не превышающую $0.5^{0}/_{00}$.

Видно, что измерения, проводимые последовательно в течение рабочего дня (всего используется 21 измерение), дают незначительный разброс, даже на графике, не превышающий $2^{0}/_{00}$, среднеквадратичная ошибка (СКО) при доверительной вероятности 95% составляет ~ $1.7^{0}/_{00}$. Отметим, что систематические различия в изотопном составе углерода, входящего в коммерческий СО₂, полученный из минерального сырья и входящего в состав СО₂, получаемого при выдохе оператора, надежно регистрируются прибором.

СКО, вычисленная не по измерениям эталона, а по изотопному составу выдоха оператора, имеет несколько бо́льшую величину и составляет $\sim 2.6^{0}/_{00}$. Это обусловлено в первую очередь дополнительным физиологическим разбросом данных [5,6].

Предварительные медицинские испытания прибора

Для проведения предварительных медицинских испытаний использовалась диагностика инфицированности больных с использованием изотопно обогащенного препарата "¹³С-карбамид TEST" производства ООО "TSD ISOTOPES" по методике BO3 [7]. В качестве

64

Рис. 4. Изменение изотопного соотношения C^{13}/C^{12} в выдохе больного Б. (1) (высокая степень инфицированности) и больного 3. (2) (практическое отсутствие инфицированости) после приема препарата "¹³С-карбамид TEST" по данным измерений с использованием масс-спектрометра "Хеликомасс".

пациентов использовались семь больных с разной степенью осемененности желудка, которая предварительно диагностировалась на сертифицированном серийном масс-спектрометре "Breathmat" компании Finnigan-Mat, Германия. Проводились измерения выдоха пациента до приема препарата (базовое значение), через 15 и через 30 min после приема. На рис. 4 представлены гистограммы, показывающие динамику изменения изотопного соотношения в выдохе для больного с высокой степенью осеменения (1), и неинфицированного пациента (2). Указанное изменение Δ рассчитывалось по формуле

$$\Delta = [(R_{\rm sam}/R_{\rm st}) - 1] \cdot 1000^{\,0}/_{00},\tag{2}$$

где R_{sam} и R_{st} — изотопные отношения для пробы и эталона соответственно, рассчитанные по формуле (1).

Во всех случаях получено не только качественное, но и количественное соответствие между измерениями на двух приборах с различием не более $2^{0}/_{00}$. Оценка величины осемененности проводилась по методике, рекомендованной ВОЗ, на основе превышения изотопного соотношения C^{13}/C^{12} над нормой, регистрируемого через 15 min после приема изотопного обогащенного препарата; измерения через 30 min после приема препарата используются как контрольные.

Прибор продемонстрировал стабильную работу и высокую надежность: во время опытной эксплуатации измерения проводились два дня в неделю в течение трех месяцев без дополнительной настройки и юстировки, при этом в комнате отсутствовал климат-контроль и температура менялась в интервале $15-25^{\circ}$ С. Точность измерений ни разу не вышла за пределы погрешности в $2^{0}/_{00}$.

Дополнительные возможности

Проведенное тестирование и сделанные расчеты показывают, что масс-спектрометр пригоден также для измерений изотопных соотношений других легких элементов: $O^{16}/O^{17}/O^{18}$ по ионам O_2^+ с массовыми числами 32, 33 и 34; N^{14}/N^{15} по ионам N_2^+ с массовыми числами 28 и 29; B^{10}/B^{11} по ионам BF_2^+ с массовыми числами 48 и 49; Cl^{35}/Cl^{37} по ионам Cl^+ с массовыми числами 35 и 37, аргона с массовыми числами 36 и 40. Для обеспечения возможности таких измерений необходима лишь установка специализированных коллекторных систем, с тем чтобы расстояние между коллекторами соответствовало дисперсии для данных ионов.

Рис. 5. Изотопные соотношения O^{18}/O^{16} в эталоне (1) и в выдохе оператора Ш. (2) при последовательных измерениях с использованием алгоритма продувки и откачки системы напуска, применяемой при медицинских измерениях. Время одного цикла измерения — 15 min.

Отдельной является задача измерения изотопного соотношения О¹⁶/О¹⁸, получаемого непосредственно из работы с ионами СО2+. В этом случае в качестве аналитического сигнала используется отношение пиков на массовых числах 44 и 46. На рис. 5 представлены такие данные, полученные при 21 последовательном измерении с эталоном и с выдохом оператора. Как и в случае изотопов углерода, разброс невелик, и среднеквадратичное отклонение для эталона составляет $2.2^{0}/_{00}$. Расчет проводился по тем же формулам, что и для углерода, с земной интенсивностью пика на массовом числе 45 (С13О¹⁶О¹⁶) на пик на массовом числе 46 (С12О¹⁶О¹⁸). Четко видны систематические различия в изотопном составе кислорода в эталоне и выдохе оператора; в то же время СКО для выдоха оператора оказывается существенно больше ($\sim 4^{0}/_{00}$), что, как и в случае с углеродом, видимо, связано с физиологическими процессами в организме человека.

Заключение и выводы

Таким образом, разработанный прибор полностью соответствует требованиям, предъявляемым к аппаратным средствам для реализации изотопного дыхательного теста, и может быть использован для целей медицинской диагностики инфицированости человека Helicobacter Pylori. Прибор готов к проведению полномасштабных медицинских испытаний, которые предполагается провести с участием специалистов медицинской Академии им. И.И. Мечникова. Аналитические характеристики прибора, полученные в процессе испытаний, показывают также его пригодность для измерения изотопного состава других легких элементов: N, O, B (по ионам BF_2^+), Ar, Cl.

Список литературы

- Кудрявцева Л.В., Щербаков П.Л., Иваников И.О., Говорун В.М. Helicobacter pylori-инфекция: современные аспекты диагностики и терапии. М.: ИЛ, 2004. 186 с.
- [2] Рапопорт С.И., Цодиков Г.В., Ходеев Ю.С., Зякун А.М., Семенова Н.В., Шубина Н.А. // Клиническая медицина. 2003. № 1. С. 19–23.
- [3] Галль Л.Н., Баженов А.Н., Кузьмин А.Г., Галль Н.Р. // Масс-спектрометрия. 2008. Т. 5. № 4. С. 295–300.
- [4] Мамырин Б.А. // ПТЭ. 1990. № 1. С. 205-207.
- [5] Коркушко О.В., Лысенко О.Б., Скульский Н.А., Соботович Э.В., Шатало В.Б. // Теоретична медицина. 2009. Т. 15. № 4. С. 631–652.
- [6] Зякун А.М. Теоретические основы изотопной масс-спектрометрии в биологии. Пущино: Фотон-век, 2010. С. 7–18.
- [7] Цодиков Г.В., Рапопорт С.И., Зякун А.М. // Российский журн. гастроэнтерологии, гепатологии, колопроктологии. 2003. № 13 (5). С. 163.