13

Применение метода поверхностной ионизации для детектирования вторичных частиц во вторично-ионной масс-спектрометрии (ВИМС)

© С.Н. Морозов, У.Х. Расулев

Институт ионно-плазменных и лазерных технологий АН Республики Узбекистан, 100125 Ташкент, Узбекистан e-mail: rasulev@aie.uz

(Поступило в Редакцию 31 октября 2012 г.)

Разработан метод постионизации в процессе ионного распыления, основанный на поверхностной ионизации распыленных частиц. Приведенные оценки показывают, что метод позволяет существенно повысить чувствительность метода ВИМС для ряда элементов. Экспериментально с использованием поверхностноионизационного метода постионизации исследован неаддитивный рост коэффициента распыления индия с увеличением количества атомов в бомбардирующих кластерах Bi_m^+ (m = 1-7) в диапазоне энергий 2–10 keV. Данная схема детектирования нейтральных частиц может быть применена и для других способов анализа поверхности, например при лазерном испарении поверхности и электронно-стимулированной десорбции.

Введение

Повышение чувствительности метода анализа поверхности ВИМС путем увеличения степени ионизации вторичных частиц является непреходящей актуальной задачей. Известно, что степень ионизации распыленных атомов существенно отличается для различных элементов и лежат в широком диапазоне от 10^{-2} до 10^{-5} . Это обстоятельство существенно осложняет использование ВИМС как количественного метода анализа. С целью повышения степени ионизации распыленных частиц применяются различные методы — лазерная и электронная постионизация, а также использование бомбардирующих ионов химически активных веществ. Для ряда элементов с относительно низкой энергией ионизации существует весьма эффективный способ ионизации на поверхности специального эмиттера с высокой работой выхода. В ФТИ им. А.Ф. Иоффе РАН в лаборатории, возглавляемой Н.И. Ионовым, и в ИЭ АН РУз им. У.А. Арифова разработана и успешно применяется как в практике физико-химических исследований, так и для разработки методик и приборов для анализа органических и биологически активных веществ в различных средах оригинальная методика детектирования нейтральных атомов и молекул с помощью поверхностной ионизации (ПИ) на окисленных поверхностях тугоплавких металлов с высокой работой выхода $\varphi = 6 - 6.8 \, \text{eV}$ [1,2]. Эта методика обладает высокой чувствительностью благодаря близкой к 100% эффективности ионизации частиц с низкими потенциалами ионизации $V \leq \varphi$, а также имеет ряд существенных преимуществ, связанных с простотой применения и надежностью. Совмещение методов ВИМС и поверхностной постионизации может привести к существенному увеличению чувствительности регистрации ряда элементов, таких как Al, Ca, Ga, Sr, In, Ва, Hf, щелочные и редкоземельные металлы, а также некоторых молекулярных соединений.

Высокая эффективность метода ПИ для регистрации нейтральных частиц в процессе распыления дает возможность исследования коэффициента распыления при бомбардировке ряда металлов кластерными ионами. Большой прогресс, достигнутый в практическом применении кластерных бомбардирующих ионов для чувствительного анализа органических и биоорганических материалов и для снятия ультратонких профилей в изделиях микро- и наноэлектроники в ВИМС [3-5], еще слабо подкрепляется исследованиями особенностей эмиссионных процессов при взаимодействии кластерных ионов с поверхностью твердого тела в диапазоне килоэлектронвольтных энергий. Изучение взаимодействия различных кластерных ионов $(Au_m^-, Bi_m^-, Si_m^-, C_m^-)$ с металлами и полупроводниками (Ta, Nb, V, Si, C, Au, Ag, Bi, In) в важном для ВИМС диапазоне энергий (несколько keV/atom in projectile) привело к экспериментальному подтверждению проявления нелинейности каскадов и режима тепловых пиков, а также к обнаружению "коллективного" или "молекулярного" эффекта неаддитивного роста вторичной ионной эмиссии [6-11]. Однако в преобладающем большинстве экспериментальных работ регистрировалась ионная составляющая распыления и в единичном количестве работ регистрируется нейтральная компонента распыления при бомбардировке кластерными ионами [12,13]. Большинство традиционных способов детектирования нейтральных частиц трудно применить при кластерной бомбардировке вследствие малых токов кластерных ионов, получаемых с использованием имеющихся ионных источников. Применяемая в ряде работ лазерная методика постионизации нейтральных распыленных частиц [12-15] имеет ряд недостатков, приводящих к искажению результатов измерений [16].

В настоящей работе приведены результаты развития метода ПИ применительно к детектированию нейтральной составляющей распыления и применения данного метода для модификации и увеличения чувствительности ВИМС. В качестве практического подтверждения новой методики проведены исследования ионной составляющей распыления In мишени при бомбардировке кластерными ионами $\operatorname{Bi}_m^-(m=1-5)$ в диапазоне энергий 6–18 keV и интегральный выход распыленных нейтральных частиц при бомбардировке кластерными ионами $\operatorname{Bi}_m^+(m=1-7)$ в диапазоне энергий 2–10 keV. В качестве исследуемой мишени выбран In, имеющий относительно низкий потенциал ионизации и по которому имеются результаты исследований ионной [16] и нейтральной [12,13] компонент распыления при бомбардировке тяжелыми кластерными ионами.

Методика

Экспериментальная установка имеет в своем составе источники кластерных ионов, магнитный сепаратор первичных ионов и магнитный анализатор вторичных ионов на базе масс-спектрометра МИ 1201 [17].

Для измерения спектров вторичной ионной эмиссии использовалась типовая схема ВИМС с источником отрицательных кластерных ионов ${\rm Bi}_m^-$ (m=1-5) распылительного типа. Бомбардировка индиевой мишени кластерными ионами производилась под углом 45°, а сбор вторичных ионов осуществлялся по нормали к поверхности.

Измерение нейтральной составляющей распыления In проводилось с использованием ПИ вторичных частиц на специальном эмиттере и последующей идентификацией десорбированных ионов с помощью магнитного (массспектрометра МИ 1201) анализатора. Бомбардирующие положительные кластерные ионы ${\rm Bi}_m^+$ (m=1-7) получались с помощью источника ионов распылительного типа. Токи первичных кластерных ионов Ві_т сепарировались по т в секторном магнитном поле и фокусировались в область 10⁻² cm² на исследуемой индиевой мишени. Измеренные с помощью цилиндра Фарадея в области исследуемой мишени токи ионов Ві_т составляли 25-250 рА для разных т. Конструкция системы электродов для поверхностной постионизации продуктов распыления и последующей регистрации с помощью масс-спектрометра приведена на рис. 1. Первичные кластерные ионы Ві_m бомбардируют поликристаллическую индиевую мишень под углом 45°. Часть распыленных из мишени частиц попадает на эмиттер из окисленного вольфрама. Коэффициент сбора распыленных частиц, попадающих на активную зону ПИ эмиттера, составляет 10%. На поверхности эмиттера происходит диссоциация распыленных частиц и десорбция образующихся путем ПИ атомарных ионов In⁺, которые идентифицируются и детектируются с помощью модифицированного масс-спектрометра МИ 1201. Конструкция имеет симметричную конфигурацию относительно оси, по которой происходит вытяжка и ускорение образующихся на эмиттере вторичных ионов до энергии 2 keV. Для получения корректных результатов измерения необходима температура эмиттера, обеспечивающая полную диссо-

Рис. 1. Конструкция системы для постионизации вторичных частиц методом ПИ на поверхности специального эмиттера с высокой работой выхода в процессе ионного распыления.

циацию продуктов распыления и десорбцию ионов In⁺. Как показали тестовые измерения, при используемой в измерениях температуре эмиттера 950 К эффективность ионизации приближалась к насыщению с ростом температуры, а время десорбции становилось много меньше 1 s. Измерение зависимости выхода распыленных частиц от количества атомов в бомбардирующем кластерном ионе Bi_m^+ производилось путем сканирования по *m* от 1 до 7 при изменении магнитного поля сепаратора первичных ионов и измерения амплитуд выхода вторичных ионов In⁺, соответствующих определенным *m*.

Результаты и их обсуждение

Используя оригинальную методику измерения выхода распыленных частиц с помощью ПИ на поверхности эмиттера из окисленного вольфрама, измерены коэффициенты распыления при бомбардировке поликристаллической индиевой мишени кластерными ионами Bi_m^+ (m = 1-7) в диапазоне энергий $E_0 = 2-10$ keV. На рис. 2 приведены графики зависимости коэффициента распыления Y_t от количества атомов в бомбардирующем кластере — m при $E_0 = 7$ keV. Там же для сравнения приведены графики зависимости коэффициентов распыления индиевой мишени, рассчитанных с помощью пакета TRIM в приближении аддитивного распыления. Как видно, экспериментально измеренные значения коэффициентов

Рис. 2. Коэффициент распыления индия Y_t при бомбардировке кластерными ионами Bi_m^+ в зависимости от количества атомов в бомбардирующих ионах. Y_t (SI) — измеренный методом ПИ, Y_t (SRIM) — расчет с помощью TRIM.

Рис. 3. Масс-спектры нейтральных кластеров In_n, вычисленные по экспериментально измеренным масс-спектрам вторичных кластерных ионов при бомбардировке индия кластерными ионами $\operatorname{Bi}_m^-(m=1-3)$ с энергией 6 keV/atom в бомбардирующем ионе.

распыления существенно превышают расчетные, что указывает на присутствие выраженного неаддитивного эффекта при кластерной бомбардировке.

С целью выявления общих характеристик эмиссии ионов и нейтральных частиц и подтверждения корректности разрабатываемой методики ПИ спектрометрии проведены измерения вторичной ионной эмиссии при бомбардировке индиевой мишени кластерными ионами Bi_m^- (m = 1-5) в диапазоне энергий 6–18 keV. Измерения масс-спектров вторичных ионов In_n^+ показали неаддитивный рост выхода вторичных кластерных ионов с увеличением числа атомов в бомбардирующих ионах Bi_m^- . Аналогичные результаты получены нами ранее в работе [16] при бомбардировке индия кластерными ионами Au_m^- .

По экспериментально измеренным масс-спектрам вторичных кластерных ионов при бомбардировке индия кластерными ионами Bi_m^- (m = 1-3) с энергией 6 keV/atom в бомбардирующем ионе вычислены соответствующие масс-спектры нейтральных кластеров In_n, которые приведены на рис. 3. Для этого использовались данные вероятности ионизации распыленных кластеров при бомбардировке индия ионами ксенона [14] в предположении, что вероятности ионизации слабо зависят от типа и энергии бомбардирующих ионов. Путем суммирования вкладов вторичных кластеров In_n (n = 1-15) вычислены коэффициенты распыления и определены факторы неаддитивного роста коэффициентов распыления K_{1m} при переходе от бомбардировки индия атомарными ионами $\dot{{\rm Bi}^-}$ к кластерным $\dot{{\rm Bi}_m^-}$ (m=2,3). В результате по данным, приведенным на рис. 3, получены факторы неаддитивности коэффициентов распыления $K_{12} = 1.47$ и $K_{13} = 2.1$ при энергии 6 keV/atom в бомбардирующих кластерных ионах. Как и в случае бомбардировки кластерными ионами Au_m^- [16], при бомбардировке кластерными ионами Ві_m в энергетических спектрах вторичных ионов индия In⁺ и In⁺₂ обнаружена квазитепловая компонента. Наиболее значительный вклад квазитепловая компонента дает в выход атомарных ионов. На рис. 4 представлен вычисленный по форме энергетических спектров относительный вклад квазитепловых ионов в эмиссию вторичных ионов In⁺ в зависимости от энергии бомбардирующих ионов Ві_т. Наблюдается резкий рост вклада квазитепловых ионов с ростом энергии и количества атомов в бомбардирующих кластерных ионах.

На рис. 5 приведены коэффициенты неаддитивности распыления индиевой мишени при бомбардировке кластерными ионами висмута K_{1m} , рассчитанные по результатам измерения коэффициента распыления методом ПИ и сравнения с данными расчета с помощью пакета TRIM. Там же для сравнения приведены коэффициенты неаддитивности K_{12} , K_{13} , вычисленные путем суммирования выходов нейтральных кластеров In_n, полученных из экспериментально измеренных спектров вторичных кластерных ионов индия. Как видно, из сравнения коэффициентов неаддитивности распыления, полученных методом ПИ, с аналогичными коэффициен-

Рис. 4. Относительный вклад квазитепловых ионов в эмиссию вторичных ионов In^+ в зависимости от энергии бомбардирующих ионов Bi_m^- .

Рис. 5. Коэффициенты неаддитивности распыления индия K_{1m} , рассчитанные по результатам измерения интегрального коэффициента распыления методом ПИ, и коэффициенты K_{12} , K_{13} , вычисленные по результатам измерения масс-спектров вторичных кластерных ионов \ln_n^+ .

Рис. 6. Зависимость коэффициентов распыления индиевой мишени Y_t от количества атомов в бомбардирующих кластерных ионах Bi_m^+ (m = 1-7) в диапазоне кинетических энергий $E_0 = 2-10 \text{ keV}$.

тами, полученными путем обработки спектров вторичных кластерных ионов, имеется количественное соответствие, свидетельствующее о корректности применяемого ПИ метода. На рис. 6 приведены графики зависимости коэффициентов распыления У, индиевой мишени от количества атомов в бомбардирующих кластерных ионах ${\rm Bi}_m^+$ (m = 1-7) в диапазоне кинетических энергий $E_0 = 2 - 10 \, \text{keV}$. Абсолютные значения коэффициентов распыления получены путем нормировки экспериментально измеренных относительных значений выхода вторичных частиц на значение коэффициента распыления индия при бомбардировке атомарными ионами висмута, вычисленного с помощью пакета ТРИМ при $E_0 = 2 \text{ keV}.$ На рис. 7 приведены графики зависимости коэффициентов распыления Yt от энергии бомбардирующих кластерных ионов. Как видно, обнаруживается рост коэффициентов распыления с увеличением энергии Е₀, который сильнее проявляется при увеличении количества атомов в бомбардирующих кластерных ионах. Характерными особенностями данного семейства кривых является наличие пологого максимума в зависимости коэффициентов распыления от количества атомов в бомбардирующем кластере *m* при энергиях до 4-5 keV, в то время как при энергиях более 5 keV наблюдается монотонный рост Y_t с ростом *m*. На основе полученных экспериментальных результатов и расчетов коэффициентов распыления в аддитивном приближении с помощью пакета TRIM были вычислены факторы неаддитивности $K_{1m} = Y_t / Y_{SRIM}$. Графики зависимости факторов неаддитивности распыления от энергии бомбардирующих ионов представлены на рис. 8. Наблюдается существенная неаддитивность распыления с ростом количества атомов в бомбардирующих кластерах. Факторы неаддитивности K_{1m} при бомбардировке кластерными ионами с количеством атомов *m* от 2 до 7 имеют различные характеры зависимости от энергии бомбардирующих ионов. Фактор К12 имеет тенденцию к монотонному снижению с ростом E_0 , зависимость факторов K_{13} и K_{14} от энергии имеет пологий минимум при $E_0 = 4 - 6 \text{ keV}$,

Рис. 7. Зависимость коэффициентов распыления *Y*_t от энергии бомбардирующих кластерных ионов.

Рис. 8. Зависимость факторов неаддитивности распыления K_{1m} от энергии бомбардирующих ионов Bi_m^+ (m = 1-7).

а факторы K_{15} и особенно K_{17} быстро растут с увеличением энергии бомбардирующих ионов в исследованном диапазоне. Такое поведение факторов неаддитивности указывает на возможность существования двух независимых механизмов, приводящих к неаддитивному росту коэффициента распыления в данном диапазоне энергий. Один из этих механизмов — это испарение нейтральных атомов из области тепловых пиков, возникающих в диапазоне энергий более 5-6 keV при количестве атомов в бомбардирующем ионе m > 3 [9,11]. Другой механизм дает вклад в неаддитивность распыления в диапазоне энергии бомбардирующих ионов менее 4-5 keV, что проявляется в росте факторов $K_{12}-K_{14}$ с уменьшением энергии E_0 вплоть до 2 keV. Этот механизм, вероятно, связан с усилением степени зависимости коэффициента распыления от энергии в области преобладания прямого выбивания вторичных частиц. Совместное воздействие на атомы мишени атомов, составляющих кластер с энергиями 0.5-1 keV/atom, приводит к неаддитивному умножению результата воздействия отдельных атомов. Данный механизм проявляется в килоэлектронвольтном и субкилоэлектронвольтном диапазоне энергий, перспективных для анализа наноструктурных объектов с помощью "cluster-SIMS" [3-5] и "cluster-SIMSmolecule" [10,17,18], что делает актуальным экспериментальное исследование неаддитивного усиления выхода вторичных частиц в диапазоне энергий бомбардирующих кластерных ионов 0.1-1 keV/atom.

Применение метода ПИ в ВИМС

Применение ПИ метода детектирования вторичных частиц может привести к существенному увеличению чувствительности регистрации целого ряда элементов и соединений в ВИМС. Как показывают наши результаты, из сравнения прямого выхода вторичных ионов индия и выхода ионов In⁺ после ионизации распыленных атомов индия на эмиттере из окисленного вольфрама следует, что при одинаковом токе первичных ионов чувствительность регистрации в случае детектирования с помощью ПИ возрастает в 30-50 раз. Такой рост выхода ионов In⁺ достигается, несмотря на то, что коэффициент сбора распыленных частиц в области активной зоны ПИ эмиттера, из которой происходит отбор десорбированных ионов In⁺, составляет примерно 10%. Увеличение чувствительности регистрации K_{sens} при использовании ПИ метода ионизации вторичных частиц можно оценить для различных элементов из простого выражения

$$K_{\rm sens} = I_{si}/I_i = \Delta K_{si}C_{si}K_i^{-1}C_i^{-1},$$

где I_{si} — амплитуда пика ионов исследуемых частиц, ионизованных с помощью ПИ на выходе массспектрометра, I_i — амплитуда пика вторичного распыленного иона исследуемых частиц на выходе массспектрометра, Δ — коэффициент сбора распыленных частиц в области активной зоны ПИ эмиттера, K_i — степень ионизации вторичных частиц при распылении, K_{si} — коэффициент ионизации распыленных вторичных частиц на поверхности ПИ эмиттера, C_{si} — эффективность сбора ПИ ионизованных вторичных ионов в апертуру вторично-ионного масс-спектрометра, C_i — эффективность сбора распыленных вторичных ионов в апертуру вторично-ионного масс-спектрометра.

Оценим порядок величин компонент этого выражения. Коэффициент сбора распыленных частиц в области активной зоны ПИ эмиттера (Δ) составлял в используемой нами конструкции примерно 10%, но нет принципиальных ограничений повысить его в 3-5 раз, используя более сложную конфигурацию ПИ эмиттера и системы отбора десорбированных ионов. Степень ионизации вторичных частиц при распылении К_і лежит в широком диапазоне 10⁻²-10⁻⁵. Коэффициент ионизации распыленных вторичных частиц на поверхности ПИ эмиттера К_{si} кардинальным образом зависит от соотношения потенциала ионизации и работы выхода ПИ эмиттера. Для ряда элементов и молекулярных соединений с потенциалами ионизации $V_i \leq 6 \,\mathrm{eV}$ при десорбции с поверхности окисленного вольфрама с работой выхода $\varphi = 6.5 - 6.8 \, \text{eV}$ может быть достигнута эффективность ионизации до 100%. Эффективность сбора ионизованных путем ПИ вторичных ионов в апертуру вторично-ионного масс-спектрометра C_{si} близка к единице, поскольку десорбированные с поверхности ПИ эмиттера ионы имеют тепловые энергии, в то время как эффективность сбора распыленных ионов в апертуру вторично-ионного масс-спектрометра C_i находится в области 0.1-0.5 из-за значительного разброса по энергиям вторичных ионов, достигающего 10-100 eV.

В таблице представлены результаты оценочного расчета увеличения чувствительности регистрации ряда элементов при бомбардировке ионами инертных газов в диапазоне энергий 5–10 keV и использовании ПИ метода постионизации. Для оценки величин K_i , K_{si} использованы данные [1,19], $\Delta = 10\%$, $C_{si} = 1$, для C_i взята максимальная оценка — 0.5. Максимальную неопределен-

Оценочные значения коэффициентов увеличения чувствительности регистрации K_{sens} ряда элементов при использовании ПИ метода постионизации в ВИМС. V_i — потенциал ионизации атомов, E_s — энергия сублимации, K_i — оценочные значения степени ионизации распыленных атомов при бомбардировке ионами инертных газов, K_{si} — оценочные значения коэффициентов ионизации на поверхности ПИ эмиттера из окисленного вольфрама

Элемент	V_i , (eV)	E_s , (eV)	K_i	K_{si}	Ksens
Al	5.98	3.36	$\sim 5\cdot 10^{-3}$	~ 0.25	~ 10
Ga	6	2.82	$\sim 10^{-3}$	~ 0.25	~ 50
Sr	5.69	1.7	$\sim 5\cdot 10^{-3}$	~ 0.5	~ 20
In	5.79	2.49	10^{-3}	~ 0.5	~ 100
Ba	5.21	1.84	$\sim 2\cdot 10^{-3}$	~ 0.7	~ 70
Sm	5.61	2.16	$\sim 2\cdot 10^{-3}$	~ 0.5	~ 50
Eu	5.67	1.85	$\sim 2\cdot 10^{-3}$	~ 0.5	~ 50

чувствительности регистрации из данных [19].

Как видно из оценочных расчетов, возможно увеличение чувствительности регистрации ряда элементов в 10-100 раз. Экспериментально измеренное увеличение чувствительности регистрации индия близко по величине к расчетному значению. Увеличение K_{sens} наиболее выражено при малых степенях ионизации распыленных частиц. Метод ПИ может оказаться эффективным и при распылении молекулярных соединений, в том числе органических материалов с низкими значениями $V_i \leq 6 \,\mathrm{eV}$ и $K_i < 10^{-2} - 10^{-3}$. Например, одним из важных с точки зрения практического применения классом соединений являются наркотические вещества группы опиатов, которые хорошо ионизуются на поверхности окисленного вольфрама с эффективностью, близкой к 100% [2]. Существенное значение при применении метода ПИ имеет энергия активации десорбции частиц с поверхности эмиттера, которая не должна быть выше 3-3.5 eV. Поскольку в противном случае для их десорбции с поверхности эмиттера потребуется недопустимо высокая температура более 1100-1200°С, что может разрушить оксидный слой на поверхности вольфрама [1].

Заключение

Разработан метод постионизации в процессе ионного распыления, основанный на поверхностной ионизации вторичных частиц на поверхности специального эмиттера с высокой работой выхода.

С использованием поверхностно ионизационного метода постионизации обнаружен неаддитивный рост коэффициента распыления индия с увеличением количества атомов в бомбардирующих кластерах Bi_m^+ (m = 1-7). Характер поведения факторов неаддитивности выхода вторичных частиц в диапазоне энергий бомбардирующих ионов 2–10 keV указывает на возможность существования различных механизмов, приводящих к неаддитивному росту эмиссии.

Чувствительность ПИ метода регистрации нейтральных частиц для индия (и, по оценкам, для ряда других элементов и соединений с низкими потенциалами ионизации) может превышать чувствительность регистрации методом ВИМС в десятки раз.

Данная схема детектирования нейтральных частиц может быть применена и для других способов анализа поверхности, например при лазерном испарении и электронно-стимулированной десорбции.

Список литературы

- [1] Rasulev U.Kh., Zandberg E.Ya. // Progr. Surf. Sci. 1988. Vol. 28. P. 181.
- [2] Rasulev U.Kh., Khasanov U., Palitcin V. // J. Chromatogr. A. 2000. Vol. 896. P. 3.
- [3] Le Beyec Y. // Int. J. Mass. Spectrom. 1998. Vol. 174. P. 101.
- [4] Stapel D., Beninghoven A. // Appl. Surf. Sci 2001. Vol. 174. P. 261.
- [5] Van Stipdonk M.J. TOF-SIMS: Surface Analysis by Mass Spectrometry / Ed. by J.C. Vickerman, D. Brigs, Huddersfield. IMPublication and Surface Spectra, 2001. P. 309.
- [6] Brunelle A., Della-Negra S., Depauw J., Jacquet D., Le Beyec Y., Pautrat M. // Phys. Rev. A. 2001. Vol. 63. P. 022 902.
- [7] Расулев У.Х. // Сб. трудов Междунар. конф. по взаимодействию ионов с поверхностью — ВИП 2003. М., Россия 2003. Т. 1. С. 31–36.
- [8] Morozov S.N., Rasulev U.Kh. // Appl. Surf. Sci. 2004. Vol. 231–232. P. 78–81.
- [9] Морозов С.Н., Расулев У.Х. // Письма в ЖТФ. 2003. Т. 29. Вып. 2. С. 77–82.
- [10] Morozov S.N., Rasulev U.Kh. // Nucl. Instrum. Meth. B. 2007. Vol. 258. P. 238–241.
- [11] Морозов С.Н., Расулев У.Х. // ЖТФ. 2009. Т. 79. Вып. 7. С. 115–121.
- [12] Samartsev A.V., Wucher A. // Appl. Surf. Sci. 2004. Vol. 231–232. P. 191–195.
- [13] Samartsev A.V., Duvenbeck A., Wucher A. // Phys. Rev. B. 2005. Vol. 72. P. 115417.
- [14] Staudt C., Wucher A. // Phys. Rev. B. 2002. Vol. 66. P. 075 419.
- [15] Ghalab S., Wucher A. // Nucl. Instrum. Meth. B. 2004. Vol. 226. P. 264–273.
- [16] *Морозов С.Н., Расулев У.Х. //* Изв. РАН. Сер. физ. 2006. Т. 70. № 8. С. 1192–1196.
- [17] Akhunov Sh., Morozov S.N., Rasulev U.Kh. // Nucl. Instrum. Meth. B. 2003. Vol. 203. P. 146–150.
- [18] *Расулев У.Х.,Морозов С.Н.* // Изв. РАН. Сер. физ. 2002. Т. 66. № 4. С. 522–526.
- [19] Wilson R.G., Stevie F.A., Magee C.W. Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis. NY: John Wiley & Sons, 1989. 384 c.