03

Расчет обтекания и сопротивления шара в ламинарном и сильнотурбулентном потоках

© Н.Н. Симаков

Ярославский государственный технический университет, 150023 Ярославль, Россия e-mail: nik_simakov@mail.ru

(Поступило в Редакцию 8 апреля 2012 г. В окончательной редакции 9 августа 2012 г.)

Для исследования сильной турбулентности набегающего потока на гидродинамическое сопротивление тела и возникновение раннего кризиса сопротивления выполнен численный эксперимент, в котором смоделировано обтекание шара свободным газовым потоком в двух случаях. В первом случае поток был ламинарным, во втором — сильнотурбулентным. Турбулентность учитывалась большим значением кинематического коэффициента турбулентной вязкости. Результаты расчетов привели к выводу, что возникновение раннего кризиса сопротивления при числах Рейнольдса порядка 100, выражающиеся в значительном (в 4–7 раз) уменьшении гидродинамической силы и коэффициента сопротивления тела, может объясняться влиянием сильной турбулентности набегающего на тело потока.

Введение. Ранний кризис сопротивления шара

Во многих технологических процессах для повышения интенсивности тепломассообмена путем увеличения поверхности раздела фаз используют распыливание жидкости в газе, например, с помощью форсунок.

При расчете таких процессов, чтобы вычислить гидродинамическую силу сопротивления капли

$$F = C_d S \rho V^2 / 2 \tag{1}$$

при ее относительном движении в газе со скоростью $V = V_{\infty}$ (V_{∞} — скорость газа вдали от капли), необходимо знать значения коэффициента C_d гидродинамического сопротивления.

Здесь и ниже обозначено: $S = \pi d^2/4$ — площадь миделева сечения сферической капли, d — ее диаметр, ρ — плотность газа, μ — динамический и $v = \mu/\rho$ — кинематический коэффициенты вязкости газа.

Для обтекания шара ламинарным потоком при числах Рейнольдса $\text{Re} = V d\rho/\mu < 0.1 \ll 1$ известна формула Стокса

$$C_d = 24/\text{Re.} \tag{2}$$

А для обтекания шара в диапазоне 2 < Re < 700 известна зависимость Клячко

$$C_d = 24/\text{Re} + 4/\text{Re}^{1/3},\tag{3}$$

которая в указанном диапазоне хорошо аппроксимируст экспериментальные данные, обобщенные кривой Рэлея [1,2].

В работах [3,4] по данным эксперимента установлено (рис. 1), что в сильнотурбулентном потоке при Re \sim 100 величина C_d для капель может уменьшаться в 4–7 раз по сравнению с общеизвестными значениями, определяемыми формулой (3). Такой же ранний кризис сопротивления на одиночном твердом шарике не наблюдался при

его обтекании свободной газовой струей, но возникал в струе, протекающей через конфузор [5].

Заметим, что экспериментальные данные, приведенные на рис. 1, ложатся близко к штриховой кривой, соответствующей формуле Стокса (2).

Предположение о возможном значительном влиянии геометрии набегающего потока на гидродинамическое сопротивление обтекаемого тела в численном эксперименте не подтвердилось [6]. Другим объяснением причины раннего кризиса сопротивления сферической частицы была гипотеза о влиянии сильной турбулентности газового потока, которую конфузор по сравнению

Рис. 1. Зависимости коэффициента сопротивления C_d шара от числа Рейнольдса Re: сплошная кривая — по формуле (3), штриховая линия — по формуле (2), данные эксперимента [3] с каплями воды в факеле форсунки при давлениях P, bar: \circ — 5; \times — 3; \diamond — 9; \Box — данные эксперимента [5] с шариком, обдуваемым струей в конфузоре.

со свободной струей мог еще больше повысить и сделать достаточной для возникновения раннего кризиса [5,6].

Для проверки этого предположения был проведен численный эксперимент, в котором моделировалось обтекание шара свободным газовым потоком как ламинарным, так и сильнотурбулентным.

1. Моделирование и расчет обтекания шара ламинарным потоком

Математическая модель течения газа включала в себя уравнение неразрывности

$$\partial \rho / \partial t + \operatorname{div}(\rho \mathbf{V}) = 0 \tag{4}$$

и уравнение Навье-Стокса

$$\partial \mathbf{V}/\partial t + (\mathbf{V}\nabla)\mathbf{V} = -\nabla P/\rho + \nu\Delta \mathbf{V}.$$
 (5)

Для связи давления и плотности газа использовалось уравнение адиабаты Пуассона $dP = \gamma P / \rho d\rho$, где γ — постоянная адиабаты. В наших расчетах использовалось значение $\gamma = 1.40$, как у воздуха.

Уравнения (4) и (5) сначала записывались для сферической системы координат, а затем представлялись в конечно-разностной форме с использованием явной схемы Лакса–Вендроффа [7]. Расчетная область в форме полукольца имела размеры: 50 точек по радиусу $r_j = jh$ (номера слоев j = 10-59) и 33 точки (i = 0-32) по полярному углу $\theta_i = 0-\pi$ (rad) между полярной осью *OZ* и радиусом-вектором **r** данной точки. Центр симметрии области совпадал с центром шара радиусом R = 10h, где h — шаг сетки по r. Уравнения гидродинамики дополнялись соответствующими граничными и начальными условиями и решались численно методом установления стационарного решения.

По вычисленному полю скоростей и давлений газа интегрированием напряжений по поверхности шара находили действующую на него силу

$$F = \int (-P\cos\theta + 3/2\nu\rho V_{\infty}\sin^2\theta/R)df. \qquad (6)$$

Затем вычисляли коэффициент сопротивления C_d шара, выразив его из формулы (1). Результаты расчетов представлены на рис. 2–7.

На рис. 2 и 3 представлены профили радиальной V_r и тангенциальной V_{θ} компонент относительной скорости газа $\mathbf{V}(r, 0)/V_{\infty}$, нормированной делением на скорость набегающего потока V_{∞} . По оси абсцисс отложены значения угловой координаты $\theta_i = \pi i/32$. Символами показаны профили, полученные при численном моделировании ламинарного обтекания шара газом в стоксовском режиме (при Re = 0.25 < 1) для сферических слоев с номерами *h* по радиусу, равными 16, 22 и 44. Для тех же слоев линиями изображены аналогичные профили, соответствующие известному аналитическому

Рис. 2. Изменение радиальной скорости V_r газа по полярному углу θ_i при Re = 0.25; номера сферических слоев по радиусу *j*: $\circ - 16$; $\Box - 22$; $\diamond - 44$.

Рис. 3. Изменение тангенциальной скорости V_{θ} газа по полярному углу θ_i при Re = 0.25; номера слоев *j*, соответствующие им обозначения точек и кривых — те же, что на рис. 2.

решению задачи Стокса [8], нормированному таким же образом:

$$V_r = \cos\theta \left[1 - \frac{3R}{2r} + \frac{R^3}{2r^3} \right], \tag{7}$$

$$V_{\theta} = -\sin\theta \left[1 - \frac{3R}{4r} - \frac{R^3}{4r^3} \right].$$
 (8)

На рис. 2,3 очевидно хорошее согласие тех и других профилей между собой.

Рис. 4. Изменение радиальной скорости V_r газа по полярному углу θ_i при Re = 128; номера слоев *j*, соответствующие им обозначения точек и кривых — те же, что на рис. 2.

Рис. 5. Изменение тангенциальной скорости V_{θ} газа по полярному углу θ_i при Re = 128; номера слоев *j*, соответствующие им обозначения точек и кривых — те же, что на рис. 2.

Аналогичные приведенным на рис. 2 и 3 профили скоростей V_r и V_{θ} представлены на рис. 4 и 5 соответственно. Они рассчитаны для случая обтекания шара ламинарным потоком газа в переходном режиме — при Re = 128. Одинаковые символы на рис. 2–5 соответствуют сферическим слоям с одинаковыми номерами *j* по радиусу *r*.

Особо отметим, что в отличие от рис. 1, 2, где символами представлены результаты расчета по двумерной численной модели, а кривыми — теоретическое решение (7), (8) стоксовской задачи, на рис. 4, 5 кривые

и символы аппроксимируют одни и те же профили, рассчитанные при численном моделировании. Можно сказать, что кривые на рис. 4,5 являются графической интерполяцией расчетных профилей, представленных символами.

Рис. 6. Зависимость коэффициента сопротивления шара от числа Рейнольдса при его обтекании ламинарным потоком в стоксовском режиме Re < 1; о — результаты расчета по численной модели, кривая — расчет по формуле (2).

Рис. 7. Зависимости коэффициента сопротивления шара от числа Рейнольдса в переходном режиме обтекания при Re > 1; • — результаты расчета обтекания шара ламинарным потоком по численной модели, сплошная кривая — расчет по формуле (3), символы \Box и пунктирная кривая — расчет обтекания сильнотурбулентным потоком, \Diamond — данные эксперимента [3] для капель в факеле форсунки при давлении P = 5 bar.

Очевидно, результаты, представленные на рис. 2 и 4, 3 и 5 соответственно, заметно различаются между собой. В частности, на рис. 4 и 5 можно усмотреть обратное течение газа в кормовой области шара: $V_r < 0$, $V_{\theta} > 0$ при j = 16 и i < 5.

На рис. 6 и 7 символами-кружками представлены зависимости коэффициента сопротивления C_d шара от числа Рейнольдса Re, рассчитанные при численном моделировании обтекания шара ламинарным потоком. На рис. 6 кроме того приведена кривая классической зависимости (2), справедливой при стоксовском обтекании шара ламинарным потоком. А на рис. 7 — кривая зависимости Клячко (3), хорошо аппроксимирующая экспериментальные данные в переходном диапазоне 2 < Re < 700. Очевидно, результаты, полученные при численном моделировании обтекания шара ламинарным потоком, хорошо согласуются с ранее известными данными.

2. Моделирование обтекания шара сильнотурбулентным потоком

При численном моделировании обтекания шара сильнотурбулентным потоком использовались следующие соображения и представления.

Если неподвижный шар в переходном диапазоне (Re ~ 10–10²) обтекается сильнотурбулентным газовым потоком, например круглой струей диаметром D, то ее можно охарактеризовать числом Рейнольдса Re₁ = $\langle V \rangle D\rho / \mu \sim 10^5$ и кинематическим коэффициентом турбулентной вязкости v_{τ} , который можно полагать неизменным в пределах струи и оценить по формулам

$$\nu_{\tau} = \sigma (J/\rho)^{1/2} = \sigma (\pi/4)^{1/2} \operatorname{Re}_{1} \nu = \operatorname{const}$$
$$\approx 0.02 \operatorname{Re}_{1} \nu \sim 2 \cdot 10^{3} \nu \gg \nu, \qquad (9)$$

где $J = \pi/4D^2\rho \langle V \rangle^2 = \text{const}$ — поток импульса струи, $\langle V \rangle$ — средняя по сечению струи скорость газа, $\sigma \approx 0.021$ — эмпирическая постоянная [8]. Заметим, что, согласно оценке (9), кинематический коэффициент турбулентной вязкости ν_{τ} в данном случае значительно превосходит аналогичный коэффициент обычной физической вязкости ν .

Согласно теории "пристеночной" турбулентности, у поверхности обтекаемого тела образуется турбулентный погранслой, в котором перенос импульса определяется суммарным действием $v_{\Sigma} = v_{\tau}(y) + v$ турбулентной и физической вязкостей [8]. Причем первое слагаемое v_{τ} изменяется пропорционально квадрату расстояния y = r - R от поверхности шара $v_{\tau} = (0.4y)^2 |\partial V_{\theta} / \partial y|$ и на малой толщине ($\delta \ll R$) погранслоя резко возрастает от нуля до максимального значения, определяемого формулой (9) для удаленной от обтекаемого тела части потока.

Уравнения Рейнольдса для осредненных по времени переменных скорости и давления, описывающие квазистационарное течение в турбулентном погранслое, имеют тот же вид, что и уравнения (4), (5), отличаясь заменой ν на ν_{Σ} . В описываемом численном эксперименте использовалась аппроксимация турбулентной вязкости функцией вида

$$v_{\tau}(y) = v_{\tau}(\infty)(1 - R/r)^2 = 2000v(1 - R/r)^2,$$
 (10)

согласно которой $v_{\tau} \rightarrow 0$ при $y = (r - R) \rightarrow 0$ и $v_{\tau} \rightarrow -\infty$ const = 2000 ν при $y = (r - R) \rightarrow \infty$, что соответствует представлениям теории пристенной турбулентности.

В сильнотурбулентном потоке обычно пренебрегают изменением давления в поперечном сечении потока [8]. Если принять, что это верно и в нашем случае, пока нет отрыва погранслоя от поверхности тела, то можно пренебречь первым слагаемым в подынтегральном выражении формулы (6).

На рис. 8 и 9 символами представлены соответственно профили скоростей V_r и V_{θ} , полученные при численном моделировании обтекания шара сильнотурбулентным потоком в переходном диапазоне при Re = 128. Для сравнения на тех же рисунках для тех же радиальных слоев (j = 11, 16, 22, 44) линиями изображены теоретические профили (7) и (8) решения задачи Стокса, распространенного в переходную область значений числа Re.

Из рис. 8 и 9 видно, что два вида профилей изменения по углу θ компоненты V_r скорости газа — рассчитанные по численной модели и теоретические (по Стоксу) — на всех сферических слоях разного радиуса $r_j = jh$ отличаются незначительно. Аналогично полученные два вида профилей компоненты V_{θ} заметно отличаются только в погранслое — вблизи поверхности шара (h = 11-16), на

Рис. 8. Изменение радиальной скорости V_r газа по полярному углу θ_i при Re = 128; символы — расчет обтекания шара сильнотурбулентным потоком для слоев с номерами j: × — 11, о — 16; \Box — 22; \Diamond — 44, ближайшие к символам кривые — профили скорости для сферических слоев с теми же номерами, полученные из решения (9) и (10) задачи Стокса.

Рис. 9. Изменение тангенциальной скорости V_{θ} газа по полярному углу θ_i при Re = 128; номера слоев *j*, соответствующие им обозначения точек и кривых — те же, что на рис. 8.

расстояниях от поверхности, равным 0.1-0.6 его радиуса *R* (рис. 9). Причем при турбулентном обтекании шара нормированная скорость газа в погранслое больше, чем с стоксовском случае. Это объясняется тем, что вблизи поверхности шара более значимым становится действие физической вязкости v, которая значительно меньше величины турбулентной вязкости v_{τ} в набегающем на шар потоке.

Результаты расчета коэффициента сопротивления шара C_d , полученные при численном моделировании его обтекания сильнотурбулентным потоком (Re₁ ~ 10⁵), представлены на рис. 7 символами-квадратиками совместно со штриховой кривой. Там же символамиромбами представлены данные эксперимента [3], полученные для капель воды в факеле распыла форсунки при p = 5 bar. Очевидно, при Re > 50 имеет место хорошее согласие между результатами расчета и эксперимента, что подтверждает корректность предложенных модельных представлений о механизме раннего кризиса гидродинамического сопротивления тела в сильнотурбулентном потоке.

Разногласие между данными расчета и эксперимента при Re < 50 можно объяснить тем, что в условиях эксперимента в этой области значений числа Re, соответствующей меньшим расстояниям от форсунки [3], турбулентность газового потока была еще недосточной для возникновения раннего кризиса сопротивления капель.

Заключение

Таким образом, проведенный численный эксперимент показал, во-первых, что предложенный алгоритм расчета обтекания шара ламинарным газовым потоком позволяет получить для величин V_r, V_{θ} и C_d резуль-

таты, согласующиеся с известными теоретическими данными при Re < 1 и экспериментальными данными при 1 < Re < 400.

Во-вторых, сочетание предложенного алгоритма с элементами теории пристенной турбулентности позволило смоделировать обтекание шара сильнотурбулентным потоком, рассчитать и в этом случае значения компонент скорости V_r , V_{θ} , а также коэффициента сопротивления C_d шара, которые оказались в согласии с экспериментальными данными для раннего кризиса сопротивления.

Это подтвердило правильность представленного в работе [6] объяснения раннего кризиса сопротивления (когда величина C_d уменьшается в 4–7 раз по сравнению со случаем обтекания шара ламинарным потоком) влиянем сильной изначальной турбулентности набегающего на сферическую частицу потока. Большая турбулентная вязкость v_{τ} потока создает условия обтекания и профили осредненных по времени скоростей газа, сходные со стоксовским обтеканием при Re < 1. А малая по сравнению с $v_{\tau}(\infty)$ величина физической вязкости v, которая играет основную роль вблизи поверхности шара, уменьшает его коэффициент сопротивления в несколько раз.

Список литературы

- Torobin L.B., Gauvin W.H. // Can. J. Chem. Eng. 1959. Vol. 37. N 4. P. 129–141.
- [2] Шлихтинг Г. Теория пограничного слоя / Пер. с немецкого. М.: Наука, 1974. 712 с.
- [3] Симаков Н.Н. // ЖТФ. 2004. Т. 74. Вып. 2. С. 46-51.
- [4] Simakov N.N., Simakov A.N. // J. Appl. Phys. 2005. Vol. 97. P. 114 901.
- [5] Симаков Н.Н. // ЖТФ. 2010. Т. 80. Вып. 7. С. 1–7.
- [6] Симаков Н.Н. // ЖТФ. 2011. Т. 81. Вып. 11. С. 23-30.
- [7] Поттер Д. Вычислительные методы в физике / Пер. с англ. М.: Мир, 1975. 382 с.
- [8] Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1978. 736 с.