⁰⁵ Высокотемпературный фон внутреннего трения в нанокомпозитах $(Co_{45}Fe_{45}Zr_{10})_x(Al_2O_3)_{100-x}, Co_x(CaF_2)_{100-x}$ и $Co_x(PZT)_{100-x}$

© Д.П. Тарасов

Военный авиационный инженерный университет 394064 Воронеж, Россия e-mail: demetriys@mail.ru

(Поступило в Редакцию 23 мая 2012 г.)

В интервале температур 300–900 К изучены упругие (G) и неупругие (Q^{-1}) свойства нанокомпозитов (Co₄₅Fe₄₅Zr₁₀)_x (Al₂O₃)_{100-x}, Co_x (CaF₂)_{100-x} и Co_x (PZT)_{100-x} (x = 23-76 at.%), полученных методом ионнолучевого распыления. Выше 650 К отмечен существенный рост зависимости $Q^{-1}(T)$, вызванный термически активированной миграцией точечных дефектов в условиях ограниченной геометрии.

Введение

Гранулированные композиты системы ферромагнетик-диэлектрик демонстрируют ряд физических свойств, отличающих их от обычных материалов [1,2]. Использование в композите в качестве диэлектрика сегнетоэлектрического материала позволяет ожидать появления новых свойств, например возникновения магнитоэлектрического эффекта. Данный эффект может иметь место благодаря стрикционной связи, реализующейся между частицами ферромагнетика и сегнетоэлектрика в результате их упругого взаимодействия.

В связи с этим целью настоящей работы стало получение и исследование упругих и неупругих свойств системы гранулированных композиционных материалов систем $(Co_{45}Fe_{45}Zr_{10})_x(Al_2O_3)_{100-x}, Co_x(CaF_2)_{100-x}$ и $Co_x(PZT)_{100-x}$.

Компонентом исследуемых систем является металл Со, испытывающий переход в ферромагнитную фазу ниже 1394 К. Диэлектрическую матрицу композитов $Co_x(PZT)_{100-x}$ формировали на основе известного сегнетоэлектрического соединения PbZrTiO₃ [3].

Методика

Нанокомпозиционные материалы систем $(Co_{45}Fe_{45}Zr_{10})_x(Al_2O_3)_{100-x},$ $Co_{x}(CaF_{2})_{100-x}$ И $Co_x(PZT)_{100-x}$ были получены методом ионно-лучевого распыления составной мишени на кремниевую или ситалловую подложку. Мишень представляла собой пластину из кобальта размером 280 × 80 × 10 mm, на поверхности которой были укреплены навески керамики размером $80 \times 10 \times 2$ mm. Применение мишени такой конструкции позволило в одном технологическом цикле получить композиционный материал в виде пленки толщиной около 3 µm, содержащей от 23 до 76 at.% металлической фазы в зависимости от взаимного расположения подложки и мишени. Структура пленки исследовалась с помощью растрового электронного микроскопа JSM-6380, а ее состав определялся с помощью электронно-зондового рентгеновского микроанализатора. Микрофотография поверхности образца $Co_{24}PZT_{76}$ представлена на рис. 1. Видно, что полученная структура является гранулированной с размерами гранул ~ 3 nm. Подобная структура наблюдается и у образцов $(Co_{45}Fe_{45}Zr_{10})_x(Al_2O_3)_{100-x}, Co_x(CaF_2)_{100-x}.$

Образцы для измерения внутреннего трения (Q^{-1}) и упругого модуля (G) представляли пластины из кремния или ситалла с напыленным на одну из поверхностей композиционным материалом толщиной около 2μ m. Образцы имели прямоугольную форму размером 5 × 18 × 0.4 mm. Измерения температурных зависимостей G и Q^{-1} проводили методом затухания изгибных колебаний на частоте около 20 Hz в интервале температур от 200 до 900 K при скорости нагрева 3 K/min. Погрешность определения Q^{-1} и G не превышала 3 и 1% соответственно. Внутреннее трение рассчитывалось по

Рис. 1. Микрофотография поверхности свежеприготовленного образца Со₂₄PZT₇₆.

формуле [4]

$$Q^{-1} = \frac{1}{\pi N} \ln \frac{A_1}{A_N},$$
 (1)

где N — число колебаний образца при изменении амплитуды от A_1 до A_N .

Внутреннее трение композита определялось путем вычитания из внутреннего трения исследуемого образца внутреннего трения подложки.

Для измерения частоты колебаний использовался частотомер, показания которого служили для определения относительного модуля упругости:

$$G = \frac{f^2}{f_0^2},$$
 (2)

где f^2 и f_0^2 — квадрат частоты колебаний образца при текущей и начальной температуре T_0 соответственно.

Результаты и их обсуждение

Рассмотрим результаты исследования упругих и неупругих свойств, полученные для свежеприготовлен-

Рис. 2. Температурные зависимости Q^{-1} (*a*) и *G* (*b*) нанокомпозитов (Co₄₅Fe₄₅Zr₁₀)_{*x*}(Al₂O₃)_{100-*x*} при различной концентрации металлической фазы *x*, at.%: *1*, *1'* — 31; *2*, *2'* — 41; *3*, *3'* — 53.

Рис. 3. Температурные зависимости $Q^{-1}(a)$ и G(b) нанокомпозитов $\operatorname{Co}_{x}(\operatorname{CaF}_{2})_{100-x}$ при различной концентрации металлической фазы *x*, at.%: *I*, *I'* — 41; *2*, *2'* — 65; *3*, *3'* — 73.

ных образцов гранулированных композиционных материалов $(Co_{45}Fe_{45}Zr_{10})_x(Al_2O_3)_{100-x}$, $Co_x(CaF_2)_{100-x}$ и $Co_x(PZT)_{100-x}$ в области температур 300–900 К.

На рис. 2–4 представлены температурные зависимости внутреннего трения Q^{-1} и модуля упругости G для нанокомпозитов (Co₄₅Fe₄₅Zr₁₀)_x(Al₂O₃)_{100-x}, Co_x(CaF₂)_{100-x} и Co_x(PZT)_{100-x}.

Как видно из графиков, Q^{-1} слабо изменяется в исследованном диапазоне температур вплоть до 650 К (кривые 1–3 на рис. 2–4, *a*), в независимости от концентрации металлической фазы. При дальнейшем увеличении температуры наблюдается рост Q^{-1} , сопровождающийся интенсивным смягчением упругого модуля *G* (кривые 1'-3' на рис. 2–4, *b*) [5].

Для образцов $(Co_{45}Fe_{45}Zr_{10})_x(Al_2O_3)_{100-x}$ с концентрацией металлической фазы x < 40 at.% рост Q^{-1} выше 650 К слабо выражен (кривая *1* на рис. 2, *a*) в отличие от образцов с x > 40 at.%, для которых на температурных зависимостях Q^{-1} выше 650 К наблюдается существенное возрастание Q^{-1} (кривые 2, *3* на рис. 2, *a*).

Для образцов $Co_x(CaF_2)_{100-x}$ с концентрацией металлической фазы x < 45 at.% рост Q^{-1} выше 650 К слабо выражен (кривая 1 на рис. 3, a) в отличие от

Рис. 4. Температурные зависимости $Q^{-1}(a)$ и G(b) нанокомпозитов $Co_x(PZT)_{100-x}$ при различной концентрации металлической фазы *x*, at.%: 1, 1' — 24; 2, 2' — 32; 3, 3' — 62; 4, 4' — 76.

образцов с x > 45 at.%, для которых на температурных зависимостях Q^{-1} выше 650 К наблюдается существенное возрастание Q^{-1} (кривые 2, 3 на рис. 3, *a*).

В случае образцов $Co_x(PZT)_{100-x}$ с концентрацией металлической фазы x < 60 at.% рост Q^{-1} выше 750 К выражен менее явно (кривые *1*, *2* на рис. 4, *a*), чем для образцов с x > 60 at.% (кривые *3*, *4* на рис. 4, *b*) [6].

Для всех исследованных композитов росту механических потерь с повышением температуры соответствует интенсивное уменьшение G (кривые l'-3' на рис. 2–4, b).

Экспериментально наблюдаемое возрастание внутреннего трения, называемое высокотемпературным фоном, в интервале температур 650–875 К удовлетворительно описывается уравнением [4]

$$Q^{-1} = Q_0^{-1} \exp\left(-\frac{E_F}{kT}\right). \tag{3}$$

Здесь Q_0^{-1} — постоянная, E_F — энергия активации высокотемпературного фона.

Отметим, что похожее поведение $Q^{-1}(T)$ наблюдалось для аморфного металлического сплава Co₄₅Fe₄₅Zr₁₀ [7]. Экспоненциальный рост Q^{-1} подтверждается линейной зависимостью $\ln Q^{-1}(1/T)$, показанной на рис. 5, *а* для образца $(\text{Co}_{45}\text{Fe}_{45}\text{Zr}_{10})_x(\text{Al}_2\text{O}_3)_{100-x}$, на рис. 5, *b* для образца $\text{Co}_x(\text{CaF}_2)_{100-x}$ и на рис. 5, *c* для образца $\text{Co}_x(\text{PZT})_{100-x}$, угол наклона которой определяется энергией активации высокотемпературного фона внутреннего трения. Анализ экспериментальных результатов по исследованию спектров Q^{-1} показал, что экспоненциальный рост Q^{-1} можно представить в виде двух отрезков прямых на зависимости $\ln Q^{-1}$ от (1/T) (рис. 5, *a*-*c*). Видно, что выше определенной температуры $T_{\text{кр}}$ имеет место удвоение энергии активации E_F .

Сделанные оценки показали, что в интервале температур до Ткр на низкотемпературном участке энергия активации фона для нанокомпозитов $(Co_{45}Fe_{45}Zr_{10})_x(Al_2O_3)_{100-x}$ до порога перколяции (x < 40 at.%) $E_{F1} = 0.22 + 0.05 \text{ eV}$, а выше $T_{\text{кр}}$ на высокотемпературном участке энергия активации фона $E_{F2} = 0.44 + 0.05$ eV. С увеличением концентрации металлической фазы x > 40 at.% энергия активации фона Q^{-1} возрастает и составляет $E_{F1} = 0.8 + 0.05$ eV на низкотемпературном и $E_{F2} = 1.7 + 0.1 \,\mathrm{eV}$ на высокотемпературном участке для нанокомпозита $(Co_{45}Fe_{45}Zr_{10})_{41}(Al_2O_3)_{59}$. При дальнейшем увеличении концентрации металлической фазы х энергия активации фона Q^{-1} незначительно возрастает и составляет для первого участка $E_{F1} = 0.9 + 0.05 \,\mathrm{eV}$ и для второго участка $E_{F2} = 1.9 + 0.1 \,\mathrm{eV}$ в случае нанокомпозита $(Co_{45}Fe_{45}Zr_{10})_{53}(Al_2O_3)_{47}.$

Сопоставимые значения энергии активации фона Q^{-1} наблюдаются для нанокомпозитов системы $Co_x(CaF_2)_{100-x}$ и $Co_x(PZT)_{100-x}$.

Если считать, что фон Q^{-1} обусловлен диффузией точечных дефектов, то для частот, когда дефекты за период колебаний успевают продиффундировать на всю толщину образца, имеем [4]

$$Q^{-1} \cong \frac{4GbD_0}{\omega kT} l^{-2} \exp\left(-\frac{E_{\nu} + E_m}{kT}\right). \tag{4}$$

В нашем случае для исследуемых нанокомпозитов, когда размер гранул составляет несколько нанометров, на высокотемпературном участке за период колебаний точечные дефекты будут успевать мигрировать на всю толщину металлической гранулы (l > d), тогда внутреннее трение будет пропорционально

$$Q^{-1} \sim \frac{n}{\omega} \exp\left(\frac{-E_m}{kT}\right).$$
 (5)

Таким образом, обнаруженное в эксперименте удвоение энергии активации фона внутреннего трения при температурах выше $T_{\rm kp}$ уместно связать с увеличением диффузионной длины l и переходом от условия l < dк условию l > d, что естественно ожидать для наногранулированных систем. В этом случае значение энергии активации миграции точечных дефектов совпадает с величиной энергии активации фона внутреннего трения

Рис. 5. Зависимости логарифма внутреннего трения от обратной температуры нанокомпозитов: $a - (Co_{45}Fe_{45}Zr_{10})_{53}(Al_2O_3)_{47}$, $b - Co_{75}(CaF_2)_{25}$ в $Co_{76}(PZT)_{24}$.

и в случае образцов $(Co_{45}Fe_{45}Zr_{10})_x(Al_2O_3)_{100-x}$ [5] превышает значение, полученное для аморфного металлического сплава $Co_{45}Fe_{45}Zr_{10}$ примерно в 2 раза [7].

Очевидно, что увеличение размеров металлических гранул должно привести к повышению температу-

ры $T_{\rm kp}$. Действительно, укрупнение размеров гранул вследствие их частичного слияния в ходе термообработки ($T_{\rm оттж} \approx 875 \,\rm K$) привело к повышению температуры $T_{\rm kp}$, что проиллюстрировано на примере композита $\rm Co_{61}(PZT)_{39}$ (рис. 6).

Рис. 6. Зависимости логарифма внутреннего трения от обратной температуры для композита Co₆₁(PZT)₃₉. Кривая *1* получена для свежеприготовленного образца. Кривая *2* — после термообработки образца при 875 К.

Заключение

Таким образом, проанализировав экспериментальные данные по исследованию высокотемпературного фона внутреннего трения в свежеприготовленных образцах гранулированных нанокомпозитов $(Co_{45}Fe_{45}Zr_{10})_x(Al_2O_3)_{100-x}$, $Co_x(CaF_2)_{100-x}$ и $Co_x(PZT)_{100-x}$, можно сделать следующий вывод:

экспоненциальный рост внутреннего трения, наблюдаемый для композитов (Co₄₅Fe₄₅Zr₁₀)_x (Al₂O₃)_{100-x} (в области температур 650–730 K), Co_x (CaF₂)_{100-x} (в области температур 650–730 K) и Co_x (PZT)_{100-x} (в области температур 700–875 K), имеет одну физическую природу и обусловлен термически активированной миграцией точечных дефектов в металлических включениях в условиях ограниченной геометрии.

Список литературы

- Stognei O.V., Kalinin Yu.E., Zolotukhin I.V., Sitnikov A.V., Wagner V., Ahltrs F.J. // J. Physics: Cond. Matter. 2003. V. 15. P. 4267–4277.
- [2] Калинин Ю.Е., Котов Л.Н., Петрунёв С.Н., Ситников А.В. // Известия РАН. Сер. Физическая. 2005. Т. 69. Вып. 8. С. 1195–1199.

- [3] Смоленский Г.А., Боков В.А., Исупов В.А. и др. Сегнетоэлектрики и антисегнетоэлектрики. Л.: Наука, 1971. 476 с.
- [4] Постников В.С. Внутреннее трение в металлах. М.: Металлургия, 1974. 352 с.
- [5] *Тарасов Д.П., Калинин Ю.Е., Ситников А.В. //* Письма в ЖТФ. 2008. Т. 34. Вып. 11. С 12–18.
- [6] Тарасов Д.П., Калинин Ю.Е., Коротков Л.Н., Ситников А.В. // Письма в ЖТФ. 2009. Т. 35. Вып. 1. С. 90–97.
- [7] Золотухин И.В., Калинин Ю.Е. // ФТТ. 1995. Т. 37. Вып. 2. С. 536–545.