05

Область гомогенности и термоэлектрические свойства CrSi₂

© Ф.Ю. Соломкин, В.К. Зайцев, С.В. Новиков, Ю.А. Самунин, Г.Н. Исаченко

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: f.solomkin@mail.ioffe.ru

(Поступило в Редакцию 15 мая 2012 г.)

Исследованы фазовый состав, структура и термоэлектрические свойства CrSi₂, полученного методами низкотемпературного синтеза. Полученные данные свидетельствуют о сильном влиянии подрешетки кремния на термоэлектрические свойства материала и о возможности твердофазных низкотемпературных превращений в кристаллической решетке CrSi₂.

Введение

СгSi₂ известен как высокотемпературный термоэлектрик p-типа проводимости с шириной запрещенной зоны 0.35 eV [1]. Он имеет гексагональную кристаллическую решетку и обладает достаточно высокими термоэлектрическими параметрами (рис. 1). Синтез CrSi₂ связан с трудностями технологического плана, так как температура его плавления превышает 1773 К. В работе [2] было показано, что температуру плавления можно снизить на 100 К, используя метод синтеза из мелкодисперсных компонентов (МК) и метод раствора в расплаве олова (PP). В случае МК получается объемный текстурированный материал, в случае PP — микрокристаллы (иглы и трубки).

1. Текстурированный CrSi₂

Ранее было показано, что свойства текстурированного материала зависят от длительности охлаждения слитка [3]. При быстром охлаждении получается материал с высокой термоэдс (α) и низкой электропроводностью (σ). При длительном, наоборот, с высокой элек-

Таблица 1. Термоэде, электропроводность и теплопроводность текстурированных и прессованных образцов $CrSi_2$ (измерения при T = 300 K) [4]

Длительность охлаждения расплава			0.5 h	8 h	23 h	40 h
Текстури-	До	$\alpha, \mu V/K$	130	100	52.5	62.5
рованные	отжига	σ ,S/cm	900	I	I	5500
	После	$\alpha, \mu V/K$	127.5	120	60	60
	отжига	σ ,S/cm	400	I		1500
Прессо-	До	$lpha, \mu { m V/K}$	140	100	50.5	40
ванные	отжига	σ ,S/cm	231.5	170	661	3600
		χ , Wcm ⁻¹ K ⁻¹	115.88	I	I	I
	После	$lpha, \mu { m V/K}$	125	103	82	38
	отжига	σ ,S/cm	342	360	766	2770
		χ , Wcm ⁻¹ K ⁻¹	113.5	_	_	121.9

Рис. 1. a — элементарная ячейка CrSi₂ [2], b — температурные зависимости: термоэдс (α), электропроводности (σ), теплопроводности (χ) и безразмерной термоэлектрической эффективности (ZT) монокристаллического CrSi₂ [1].

тропроводностью и низкой термоэдс (табл. 1). Таким образом, термоэлектрические свойства образцов (α , σ) задаются условиями синтеза, в частности, длительностью охлаждения слитка. Соотношения между величинами α и σ , определяемые условиями синтеза, сохраняются после горячего прессования размолотого текстурированного материала и отжига прессованных образцов [4]. В то же время теплопроводность прессованных образцов слабо зависит от условий синтеза и отжига.

Рекордная величина фактора мощности $(S^2\sigma)$ на текстурированных образцах была получена в режиме медленного охлаждения. В области температур 500–600 К она составляет 45 μ W/(K²cm) [3].

На рис. 2 показана область гомогенности CrSi₂ [5], на которой нанесены составы, полученные авторами для текстурированных образцов. Состав (соотношение Cr/Si) определялся из данных микрозондового анализа [3]. На графике (рис. 3) показано, как влияет соотношение Cr/Si на объем элементарной ячейки CrSi₂ и на тер-

Рис. 2. Область гомогенности CrSi₂ [5].

Рис. 3. Зависимость объема элементарной ячейки CrSi₂ от соотношения Cr/Si [2].

Рис. 4. Зависимость электропроводности (σ) и термоэдс (α) текстурированных образцов от соотношения Cr/Si (измерения вдоль оси роста при T = 300 K) [2].

Рис. 5. Зависимости термоэдс (α) и электропроводности (σ) прессованных образцов CrSi₂ от длительности синтеза исходного текстурированного материала (измерения при T = 300 K).

моэлекрические свойства материала (рис. 4). Объем элементарной ячейки $CrSi_2$ определялся по данным рентгеновского фазового анализа [2]. При длительном охлаждении объем элементарной ячейки увеличивается, количество кремния в формульной единице уменьшается, термоэдс падает, электропроводность растет. При быстром охлаждении элементарная ячейка сжимается, количество Si в формульной единице растет, электропроводность падает, термоэдс увеличивается (рис. 3, 4). Состав $CrSi_{2.08}$ является предельным, после которого термоэдс и электропроводность текстурированных образцов не меняются по величине.

На рис. 5 показано, как меняются термоэлектрические параметры не отожженных прессованных образцов в зависимости от условий синтеза исходного текстурированного материала.

2. Микрокристаллический CrSi₂

Так же как и в случае текстурированного объемного материала, свойства микрокристаллов, полученных РР-методом, зависят от длительности охлаждения [6]. Но в отличие от текстурированных образцов электропроводность микрокристаллов увеличивается при нагревании (рис. 6) [7].

Работа с такими микрообъектами достаточно сложна. Определение их удельной электропроводности затруднено из-за ошибок в определении площади поперечного сечения. Поэтому микрокристаллы (микроиглы) длиной 7 mm и сечением до 0.3 mm брикетировались методом горячего прессования при T = 1273 К. Измерения после прессовки показали, что характер зависимости со-

Рис. 6. Температурная зависимость электропроводности микрокристалла CrSi₂.

Рис. 7. Температурная зависимость электропроводности прессованных микрокристаллов CrSi₂ (ЦК).

Рис. 8. Температурная зависимость электропроводности размолотых и спрессованных микрокристаллов CrSi₂ PK.

Рис. 9. *а* — РК после горячего прессования, *b* — РК после температурных измерений *а* и *σ*, *с* — РК после отжига (1273 K, 144 h).

Рис. 10. Температурная зависимость электропроводности размолотых и спрессованных микрокристаллов CrSi₂ после отжига РК.

Таблица 2. Влияние термообработки на фазовый состав и структуру прессованных образцов, полученных из механически размельченных микрокристаллов PK CrSi₂

Образец РК	Фазовый состав	Параметры элементарной ячейки
После горячего прессования	CrSi ₂ — основная фаза Si — 20%, CrSi < 5%	a = 4.427 (1) c = 6.387 (5) V = 108.4
После температур- ных измерений α и σ	CrSi ₂ — основная фаза CrSi < 5%	a = 4.439 (5) c = 6.372 (5) V = 108.7
После отжига (1273 K, 144 h)	СrSi ₂ — основная фаза CrSi > 5% SiO ₂ — следы	

хранился, но в процессе измерений в области T = 500 K образцы разрушаются (рис. 7).

Рентгеновские исследования показали, что в исходном материале содержалось 5% Si, после горячего прессования его стало 10%, а после разрушения 20%. Опыт был повторен с прессованными образцами, полученными из размельченных кристаллов (РК) с размером зерна от 10 μ m и менее. Характер температурной зависимости электропроводности повторился, образец механически не разрушился, на температурной зависимости электропроводности в области T = 500 К наблюдался скачок (рис. 8).

Рентгеновские исследования показали, что после горячего прессования РК, так же как и в случае цельнопрессованных микрокристаллов (ЦК), в спектре появляется мощная полоса Si (рис. 9, *a*). После температурных измерений электропроводности РК эта полоса полностью исчезает, что может свидетельствовать о внедрении Si врешетку $CrSi_2$ (рис. 9, *b*). Отжиг таких образцов при 127 K не привел к их механическому разрушению, но характер температурной зависимости электропроводности резко изменился. Она стала как у текстурированного материала, полученного при быстрой кристаллизации (рис. 10).

Рентгенограмма отожженного материала РК дает более слабые по амплитуде рефлексы $CrSi_2$, что может свидетельствовать о его аморфизации, свободный Si отсутствует (рис. 9, *c*). В табл. 2 приводятся фазовый состав и параметры элементарной ячейки исследованных образцов.

Из экспериментальных данных, полученных на текстурированном материале, на микрокристаллах, а также на образцах, изготовленных методом горячего прессования, можно сделать вывод о возможных низкотемпературных (T = 500 K) структурных перестройках в кристаллической решетке CrSi_2 , связанных с внедрением и выпадением Si.

Это подтверждается данными работы [3], в которой проводился поэтапный отжиг текстурированного CrSi₂. Было обнаружено, что в районе 1073 К наблюдается изменение термоэлектрических параметров (электропроводность падает, термоэдс растет). В [2] показано, что в случае текстурированного материала при низкой электропроводности и высокой термоэдс наблюдается сжатие объема элементарной ячейки, ее преимущественное растяжение вдоль оси c. При этом количество Si в формульной единице растет.

Особенности поведения кремния могут быть связаны с возможностью изменения размеров и фомры элементарной ячейки CrSi₂, ее преимущественного растяже-

Рис. 11. Возможная система деформаций в объеме CrSi₂.

ния или сжатия вдоль кристаллографических осей *а* и *с*. Сосуществование в объеме материала разных по форме и размеру элементарных ячеек может приводить к появлению множества вакансий с общим объемом, близким по размеру к объему элементарной ячейки. В таких "полостях" при определенных условиях может накапливаться кремний, а в случае легирования — легирующие элементы. В случае разработки технологии, позволяющей создать регулярную систему таких состояний (рис. 11), появляется возможность создания наноструктурных высокотемпературных композиционных материалов.

Авторы благодарны коллегам доктору физ.-мат. наук А.Т. Буркову за плодотворное обсуждение материалов работы и Н.Ф. Картенко за фазовый рентгеновский анализ образцов.

Список литературы

- [1] Соломкин Ф.Ю., Зайцев В.К., Суворова Е.И., Орехов А.С., Картенко Н.Ф., Колосова А.С., Самунин А.Ю., Бурков А.Т., Новиков С.В., Исаченко Г.Н. Термоэлектрики и их применение. СПб., 2010. С. 260–265.
- [2] Fedorov M.I., Zaitsev V.K. // Handbook of Thermoelectric / Ed. by D.M. Rome. N.Y.: CRC press, 2006. P. 31–2, 31–3.
- [3] Соломкин Ф.Ю., Суворова Е.И., Зайцев В.К., Новиков С.В., Бурков А.Т., Самунин А.Ю., Исаченко Г.Н. // ЖТФ. 2011. Т. 81. Вып. 2. С. 147–149.
- [4] Solomkin F.U., Samunin A.Yu., Zaitsev V.K., Burkov A.T., Novikov S.V., Konstantinov P.P., Gurieva E.A. 9th Europ. Conf. on Thermoelectircs (ECT2011). Thessaloniki. September 28–30. 2011. P.B_27_O.
- [5] Гельд П.В., Сидоренко Ф.А. Силициды переходных металлов четвертого периода. М.: Металлургия. 1971. С. 90.
- [6] Соломкин Ф.Ю., Зайцев В.К., Картенко Н.Ф., Колосова А.С., Орехов А.С., Самунин А.Ю., Исаченко Г.Н. // ЖТФ. 2010. Т. 80. Вып. 1. С. 152–154.
- [7] Соломкин Ф.Ю., Зайцев В.К., Картенко Н.Ф., Колосова А.С., Бурков А.Т., Урюпин О.Н., Шабалдин А.А. // ЖТФ. 2010. Т. 80. Вып. 5. С. 157–158.