10

Распространение упругих волн в неидеальной слоистой среде

© В.В. Румянцев, С.А. Федоров, В.М. Юрченко

Донецкий физико-технический институт им. А.А. Галкина НАН Украины, 83114 Донецк, Украина e-mail: rumyants@teor.fti.ac.donetsk.ua

(Поступило в Редакцию 7 февраля 2012 г.)

В рамках приближения виртуального кристалла изучены особенности распространения акустических возбуждений через несовершенную 1D-сверхрешетку. Выполнено численное моделирование зависимости ширины нижайшей запрещенной акустической зоны неидеального (разупорядоченного по составу) двухподрешеточного 1D-фононного кристалла от концентрации примесных слоев.

Введение

Одним из распространенных методов исследования физических свойств твердых тел сегодня является изучение распространения упругих колебаний. Совершенствование техники эксперимента, развитие теоретических представлений расширяет диапазон частот указанных возбуждений и часто делает акустические методы незаменимыми в исследованиях структуры твердых тел. В настоящее время имеется значительное число работ [1-6], посвященных расчетам спектров электромагнитных и акустических возбуждений в сверхрешетках. Эти расчеты основываются на использовании метода Т-матрицы и решении системы уравнений для коэффициентов разложения соответствующих полей в ряд Фурье. При нахождении конкретных физических характеристик (например, коэффициентов прохождения электромагнитного излучения, зонного спектра) точный расчет в общем случае осуществить не представляется возможным, поэтому используются приближенные численные методы. Например, в работе [7] показано, что вблизи зоны Бриллюэна можно приближенно представить в аналитической форме зависимость соответствующих частот от блоховского волнового вектора. Развитый для идеальных сверхрешеток подход [7] авторы применили при исследовании [5,6] электромагнитных возбуждений неидеальных 1D-систем, содержащих инородные (дефектные) слои, распределенные случайным образом по всему объему сверхрешетки. Распространенным методом расчета нормальных мод в таких неупорядоченных средах является приближение виртуального кристалла (ПВК), которое заключается [8] в замене конфигурационно зависимых параметров гамильтониана задачи на конфигурационно усредненные их значения. Исследование оптических характеристик неидеальных сверхрешеток выполнено в работах [5,6] с использованием именно этого приближения.

В настоящей работе указанный подход в рамках идеологии [3] перенесен на аналогичные расчеты при исследовании особенностей распространения акустических возбуждений через несовершенный 1D-фононный кристалл (систему плоскопараллельных слоев однородных материалов, отличающихся упругими характеристиками).

1. Упругие волны в 1D-сверхрешетках

В общем случае неоднородной среды, плотность $\rho(\mathbf{r})$ вещества и упругие модули $\hat{\Lambda}(\mathbf{r})$ которой являются функциями координат, поле $\mathbf{u}(\mathbf{r}, t)$ упругих смещений описывается системой уравнений [9,10]

$$\rho(\mathbf{r})\ddot{u}_{i}(\mathbf{r},t) = \frac{\partial\Lambda_{iklm}(\mathbf{r})}{\partial x_{k}} \frac{\partial u_{m}(\mathbf{r},t)}{\partial x_{l}} + \Lambda_{iklm}(\mathbf{r}) \frac{\partial^{2}u_{m}(\mathbf{r},t)}{\partial x_{k}\partial x_{l}},$$
(1)

соответствующей плотности функции Лагранжа $\frac{1}{2}\rho(\mathbf{r})\left(\frac{\partial u}{\partial t}\right)^2 - \frac{1}{2}\Lambda_{iklm}(\mathbf{r})\frac{\partial u_k}{\partial x_i}\frac{\partial u_m}{\partial x_i}$ [10]. Из (1) следует, что если ограничить исследование случаем монохроматических упругих возбуждений $\mathbf{u}(\mathbf{r}, t) = = \mathbf{u}(\mathbf{r})\exp(-i\omega t)$, то уравнение для амплитуд $\mathbf{u}(\mathbf{r})$ принимает следующий вид:

$$\hat{L}(\mathbf{r})\mathbf{u}(\mathbf{r}) = \omega^2 \mathbf{u}(\mathbf{r}). \tag{2}$$

Здесь $\hat{L}(\mathbf{r})$ — тензорный оператор:

$$[\hat{L}(\mathbf{r})]_{im} = -\frac{1}{\rho(\mathbf{r})} \left[\frac{\partial \Lambda_{iklm}(\mathbf{r})}{\partial x_k} \frac{\partial}{\partial x_l} + \Lambda_{iklm}(\mathbf{r}) \frac{\partial^2}{\partial x_k \partial x_l} \right].$$
(3)

Для трансляционно инвариантной системы с периодом **d** оператор \hat{L} , тензор $\hat{\Lambda}$ и плотность $\rho(\mathbf{r})$ — удовлетворяют соотношениям

$$\hat{L}(\mathbf{r}) = \hat{L}(\mathbf{r} + \mathbf{d}), \quad \hat{\Lambda}(\mathbf{r}) = \hat{\Lambda}(\mathbf{r} + \mathbf{d}) \ \ \mathbf{H} \ \ \rho(\mathbf{r}) = \rho(\mathbf{r} + \mathbf{d}),$$
(4)

поэтому справедливо разложение величин $\rho(\mathbf{r})$ и $\Lambda(\mathbf{r})$ в ряд Фурье по векторам соответствующей обратной решетки:

$$\rho(\mathbf{r}) = \sum_{\mathbf{g}} \rho(\mathbf{g}) \exp(i\mathbf{g}\mathbf{r}), \quad \Lambda_{iklm}(\mathbf{r}) = \sum_{\mathbf{g}} \Lambda_{iklm}(\mathbf{g}) \exp(i\mathbf{g}\mathbf{r}).$$
⁽⁵⁾

Поскольку выполняются условия (4), то решение уравнения (2) имеет блоховский вид

$$\mathbf{u}_{\mathbf{K}}(\mathbf{r}) = \mathbf{U}_{\mathbf{K}}(\mathbf{r}) \exp(i\mathbf{K}\mathbf{r}) = \sum_{\mathbf{g}} U_{\mathbf{K}}(\mathbf{g}) \exp[i(\mathbf{K} + \mathbf{g})\mathbf{r}].$$
 (6)

После несложных вычислений, используя (2), (5) и (6), получим следующую систему уравнений для амплитуд $U_{K}(g)$:

$$\omega^{2} U_{\mathbf{K}}^{i}(\mathbf{g}) = \sum_{\mathbf{g}'} \Big[B_{iklm}(\mathbf{g} - \mathbf{g}')(K^{k} + g'^{k})(K^{l} + g'^{l}) - iA_{ilm}(\mathbf{g} - \mathbf{g}')(K^{l} + g'^{l}) \Big] U_{\mathbf{K}}^{m}(\mathbf{g}'),$$
(7)

где $A_{ilm}(\mathbf{g})$ и $B_{iklm}(\mathbf{g})$ — фурье-коэффициенты разложения функций $A_{ilm}(\mathbf{r}) = \frac{1}{\rho(\mathbf{r})} \frac{\partial \Lambda_{iklm}(\mathbf{r})}{\partial x_k}$ и $B_{iklm}(\mathbf{r}) = (1/\rho(\mathbf{r}))\Lambda_{iklm}(\mathbf{r})$ в ряд Фурье.

Рассмотрим распространение упругой монохроматической волны с блоховским вектором $\mathbf{K} = (o, o, K)$ в 1D-фононном кристалле (ось *z* в одномерной сверхрешетке направлена вдоль нормали к слоям). Зависящие от единственной координаты *z* тензор $\hat{\Lambda}(z)$ модуля упругости и плотность $\rho(z)$ вещества сверхрешетки связаны с соответствующими слоевыми величинами следующим образом:

$$\rho(z) = \sum_{n,\alpha} \rho_{n\alpha} \theta_{n\alpha}(z), \quad \hat{\Lambda}(z) = \sum_{n,\alpha} \hat{\Lambda}_{n\alpha} \theta_{n\alpha}(z), \quad (8)$$

где

$$\theta_{n\alpha}(z) = \theta \left[z - (n-1)d - \left(\sum_{j=1}^{\alpha} a_{nj} - a_{n\alpha} \right) \right] \\ - \theta \left[z - (n-1)d - \sum_{j=1}^{\alpha} a_{nj} \right].$$
(9)

В (8), (9) *п* — номер элементарной ячейки 1Dсверхрешетки, $\alpha = 1...\sigma$ — номер элемента ячейки (слоя с толщиной $a_{n\alpha}$). Для идеальной (с периодом *d*) 1D-решетки $\rho(z) = \rho(z+d)$, $a_{n\alpha} \equiv a_{\alpha}$, $\rho_{n\alpha} \equiv \rho_{\alpha}$ (аналогичные равенства выполняются и относительно тензора Â). В данном случае система уравнений (7) принимает вид

$$\omega^{2} U_{K}^{i}(g) = \sum_{g'} \left[B_{izzm}(g - g')(K + g')^{2} - iA_{izm}(g - g')(K + g') \right] U_{K}^{m}(g'), \quad (10)$$

где $g = \frac{2\pi}{d} p$ $(p = 0, \pm 1, \pm 2, ...)$. Легко показать, что для случая 1D-сверхрешетки с характеристиками слоев, удовлетворяющими условию (8), тензор $A_{izm}(\mathbf{g})$ обращается в нуль. Фурье-образ тензора \hat{B} , который получен с использованием выражения (9), имеет вид

$$\hat{B}(p) = -\frac{i}{2\pi p} \sum_{\alpha} \frac{\hat{\Lambda}_{n\alpha}}{\rho_{n\alpha}} \Biggl\{ \exp\left(i \frac{2\pi}{d} p \sum_{j=1}^{\alpha} a_j\right) - \exp\left[i \frac{2\pi}{d} p\left(\sum_{j=1}^{\alpha} a_j - a_\alpha\right)\right] \Biggr\}.$$
(11)

Для изотропных слоев 1D-фононного кристалла компоненты тензора $\hat{\Lambda}$ (и соответственно \hat{B}) имеют вид [11]

$$\Lambda_{iklm} = \lambda \delta_{ik} \delta_{lm} + \mu (\delta_{il} \delta_{km} + \delta_{im} \delta_{kl}), \qquad (12)$$

где *λ*, *µ* — коэффициенты Ламе.

Благодаря выполнению равенств (12) система уравнений (10) расщепляется на две назависимые подсистемы. Первая, в которой фигурирует только $\Lambda_{\parallel} = \lambda + 2\mu$ (и, следовательно, B_{\parallel}), описывает распространение продольных звуковых возбуждений, а вторая, в которой фигурирует лишь $\Lambda_{\perp} = \mu$ (и B_{\perp}), описывает поперечные возбуждения. Очевидно, что такое расщепление оказалось возможным благодаря изотропности слоев, составляющих многослойник.

Законы дисперсии соответствующих акустических возбуждений определяются бесконечной системой уравнений (10), которая в общем случае (для произвольных K) решается с помощью приближенных численных методов (аналогично нахождению поляритонных возбуждений в диэлектрических сверхрешетках [1]). Тем не менее (как будет показано ниже) для значений К, близких к границе зоны Бриллюэна ($|K - \frac{2\pi}{d}| \approx K$), зависимость $\omega = \omega(K)$ можно записать в аналитической форме. Действительно, из (10) видно, что в этом случае наибольшими являются величины $U_K^i(g)$ для $g \, c \, p = 0, -1$ при выполнении условия $\omega^2 \approx K^2 B_{\parallel,\perp}(0)$ (аналогично (6.1.23) в [7]). Здесь $B_{\parallel,\perp}(0) \equiv B_{\parallel,\perp}(p=0)$ — фурье-коэффициент, который легко получить, используя (11) с учетом (12). Оставляя в системе (10) только слагаемые, соответствующие резонансу указанных плоских волн (p = 0, -1), получаем следующий закон дисперсии акустических возбуждений:

$$\omega_{\pm}^{2} = K^{2} \big[B_{\parallel,\perp}(0) \pm |B_{\parallel,\perp}(1)| \big].$$
(13)

2. Результаты и обсуждение

Рассмотрим акустические возбуждения в несовершенном 1D-фононном кристалле — топологически упорядоченной системе, которая в отличие от идеальной сверхрешетки содержит хаотически внедренные слои-примеси иного состава. Простейшим приближением, позволяющим выявлять особенности и трансформацию спектров элементарных возбуждений, обусловленные изменением концентрации дефектов в неидеальных кристаллах, является ПВК. Применение этого приближения позволяет "восстановить" трансляционную симметрию системы и получить искомый спектр акустических возбуждений. Для этого конфигурационно зависимый тензор \hat{B} неидеальной сверхрешетки представим, используя случайные величины η_{na}^{ν} , в виде

$$\hat{B}_{n\alpha} \equiv \frac{\hat{\Lambda}_{n\alpha}}{\rho_{n\alpha}} = \sum_{\nu(\alpha)} \hat{B}_{\alpha}^{\nu(\alpha)} \eta_{n\alpha}^{\nu(\alpha)}, \qquad (14)$$

причем $\eta_{n\alpha}^{\nu} = 1$, если в узле $(n\alpha)$ 1D-кристалла находится слой $\nu(\alpha)$ -го сорта, $\eta_{n\alpha}^{\nu} = 0$ — в ином случае,

 $\hat{B}^{\nu(\alpha)}_{\alpha} \equiv \frac{\hat{\Lambda}^{\nu(\alpha)}_{\alpha}}{\rho^{\nu(\alpha)}_{\alpha}}$. После применения в соответствии с ПВК (аналогично квазичастичному подходу [6,12]) процедуры конфигурационного усреднения (обозначенной угловыми скобками) из (14) следует, что

$$\langle \hat{B}_{n\alpha} \rangle = \sum_{\nu(\alpha)} \hat{B}_{\alpha}^{\nu(\alpha)} C_{\alpha}^{\nu(\alpha)}.$$
 (15)

Здесь $C_{\alpha}^{\nu(\alpha)}$ — концентрация примесного слоя $\nu(\alpha)$ -го сорта в α -й подрешетке, $\sum_{\nu(\alpha)} C_{\alpha}^{\nu(\alpha)} = 1$. Замена $\hat{B}_{n\alpha} \rightarrow \langle \hat{B}_{n\alpha} \rangle$ в (11) позволяет использовать это выражение для нахождения спектра акустических возбуждений исследуемой несовершенной сверхрешетки как функции концентрации инородных слоев.

Корни уравнения (13) ω_{\pm} определяют границы спектральной полосы: при частотах $\omega_{-}(K) < \omega < \omega_{+}(K)$ (запрещенная зона) корни комплексные, акустические волны — затухающие (брэгговское отражение), частоты $\omega < \omega_{-}$, $\omega > \omega_{+}$ соответствуют распространяющимся волнам. Важной для физических приложений является ширина запрещенной зоны $\Delta \omega = |\omega_{+} - \omega_{-}|$. В данном случае величина нижайшей запрещенной зоны, согласно (13), равна

$$\Delta \omega = \omega \Big| \sqrt{1 + B_{\parallel,\perp}(1)/B_{\parallel,\perp}(0)} - \sqrt{1 - B_{\parallel,\perp}(1)/B_{\parallel,\perp}(0)} \Big|.$$
(16)

Величины $B_{\parallel,\perp}$ определяются количеством подрешеток, характеристиками материала, такими как коэффициенты Ламэ λ, μ , плотность ρ вещества, и зависят от концентрации инородных (по отношению к идеальной сверхрешетке) слоев. Поэтому концентрационное поведение запрещенной зоны $\Delta \omega$ может быть весьма разнообразным в зависимости от соответствующих параметров задачи. Исследуем подробнее характер зависимости $\Delta \omega$ для случая разупорядоченного по составу двухподрешеточного 1
D-фононного кристалла: первая подрешетка — слои стали (с модулем Юнг
а $E_1^{(1)}=206\,{\rm GPa}$ и коэффициентом Пуассона $\sigma_1^{(1)} = 0.30$), вторая подрешетка — слои резины (с модулем Юнга $E_2^{(1)} = 0.005$ GPa и коэффициентом Пуассона $\sigma_2^{(1)} = 0.46$). В качестве примесных используем слои бетона двух типов: первый (в первой подрешетке) имеет модуль Юнга $E_1^{(2)} = 40$ GPa и ко-эффициент Пуассона $\sigma_1^{(2)} = 0.34$, а второй (во второй подрешетке) — $E_2^{(2)} = 15$ GPa и $\sigma_2^{(2)} = 0.32$. При этом толщина слоев первой подрешетки a_1 , второй — a_2 (в численных расчетах использовалась относительная толщина $a_1/d = 0.4$), концентрацию слоев-примесей в первой и второй подрешетках обозначим соответственно $C_1^{(2)}$ и $C_2^{(2)}$. Подробный расчет на основе соотношения (1) приводит к следующим выражениям:

$$B_{\beta}(0) = \left(b_{1,\beta}^{(1)}f_{1,\beta}a_1 + b_{2,\beta}^{(1)}f_{2,\beta}a_2\right)/d,$$

$$B_{\beta}(1) = \frac{1}{\pi} \left|b_{2,\beta}^{(1)}f_{2,\beta} - b_{1,\beta}^{(1)}f_{1,\beta}\right| \sin \pi a_1/d, \qquad (17)$$

1

Зависимость запрещенной зоны $\Delta \omega$ двухподрешеточного 1Dфононного кристалла от концентраций $C_1^{(2)}$, $C_2^{(2)}$ инородных слоев (1 — продольная мода, 2 — поперечная мода).

где

$$\begin{split} f_{1,\beta} &= 1 - C_1^{(2)} (1 - b_{1,\beta}^{(2)} / b_{1,\beta}^{(1)}), \\ f_{2,\beta} &= 1 - C_2^{(2)} (1 - b_{2,\beta}^{(2)} / b_{2,\beta}^{(1)}), \\ b_{\alpha,\beta}^{(1,2)} &= \Lambda_{\alpha,\beta}^{(1,2)} / \rho_{\alpha}^{(1,2)}, \quad \alpha = 1; 2 \end{split}$$

индекс β обозначает "||" — в случае продольных акустических возбуждений, либо "⊥" — в случае поперечных возбуждений. Зависимость запрещенной зоны $\Delta \omega$ исследуемого двухподрешеточного 1D-фононного кристалла от концентраций $C_1^{(2)}$, $C_2^{(2)}$ инородных слоев представлена на рисунке: случай *I* соответствует продольной моде, а 2 — поперечной. Анализ поведения поверхностей $\Delta \omega (C_1^{(2)}, C_2^{(2)})$ показывает, что при конкретных параметрах задачи и величинах концентрации примесных слоев значения $\Delta \omega$ существенно различны. Для определенных $C_1^{(2)}$, $C_2^{(2)}$ значения $\Delta \omega$ велики, т. е. многослойная система является акустически слабопроницаемой, а для $C_1^{(2)}$, $C_2^{(2)}$, удовлетворяющих равенству

$$b_{2,\beta}^{(1)} f_{2,\beta}(C_1^{(2)}, C_2^{(2)}) = b_{1,\beta}^{(1)} f_{1,\beta}(C_1^{(2)}, C_2^{(2)}),$$
(18)

ширина щели $\Delta \omega$ (в рамках используемой модели) обращается в нуль. Из соотношения (18) следует, что поскольку $(C_1^{(2)}, C_2^{(2)}) \in (0, 1)$, то акустические возбуждения определенной частоты проходят беспрепятственно ($\Delta \omega = 0$) лишь через многослойники с соответствующими характеристиками материала. Очевидно, что для одной и той же сверхрешетки не обязательно найдутся $C_1^{(2)}$ и $C_2^{(2)}$ такие, что поперечная и/или продольная моды удовлетворяют условию $\Delta \omega = 0$ для одной и той же частоты звуковой волны.

Заключение

Исследования в области акустики [4,13] и совершенствование акустической техники направлены, как правило, на снижение уровня нежелательных звуков (борьбу с шумом), а также на поиск способов выделения полезных звуковых сигналов (например, для медицинской диагностики) или решения проблемы акустического обнаружения (эхолот), на то, как измерить некоторые другие физические свойства с помощью звука. В связи с этим создание новых акустических метаматериалов, позволяющих контролировать распространение звуковых волн в среде, весьма актуально. Выполненное в настоящей работе исследование зависимости ширины нижайшей запрещенной акустической зоны неидеальных 1D-сверхрешеток от концентрации примесных слоев может оказаться полезным при конструировании акустических композитных материалов.

Список литературы

- Joannopoulos J.D., Johnson S.G., Winn J.N., Meade R.D. Photonic Crystals, Molding the Flow of Light/Second Edition. Princeton: Princeton University Press, 2008. 305 p.
- [2] Шабанов В.Ф., Ветров С.Я., Шабанов А.В. Оптика реальных фотонных кристаллов. Новосибирск: СО РАН, 2005. 240 с.
- [3] Косевич А.М. // Письма в ЖЭТФ. 2001. Т. 74. Вып. 11. С. 633–637.
- [4] Shu Zhang, Chunguang Xia, Nicholas Fang // Phys. Rev. Lett. 2011. Vol. 106. P. 024 301(1)–024 301(4).
- [5] Rumyantsev V.V., Fedorov S.A., Shtaerman E.Ya. // Superlattices and Microstructures. 2010. Vol. 47. N 1. P. 29– 33.
- [6] Rumyantsev V.V., Fedorov S.A., Gumennyk K.V. // Photonic Crystals: Optical Properties, Fabrication and Applications / Ed. William L. Dahl. NY: Nova Sciecne Publishers, Inc., 2011. P. 183–200.
- [7] Ярив А., Юх П. Оптические волны в кристаллах. М.: Мир, 1987. 616 с.
- [8] Dargan T.G., Capaz R.B., Koiler Belita // Brazilian J. of Phys. 1997. Vol. 27/A. P. 209–304.
- [9] Бреховских Л.М. Волны в слоистых средах. М.: Наука, 1973. 343 с.
- [10] Косевич А.М. Физическая механика реальных кристаллов. Киев: Наукова думка, 1981. 328 с.
- [11] *Най Дж.* Физические свойства кристаллов. М.: Мир, 1967. 388 с.
- [12] Займан Дж. Модели беспорядка. М.: Мир, 1982. 592 с.
- [13] Pendry J.B., Li Jensen // New J. of Phys. 2008. Vol. 10. N 11.
 P. 115 032(1)–115 032(9).