04

Расчет электрического потенциала и силы Лоренца в локально-ионизованном МГД-течении в неоднородном магнитном поле при поперечном обтекании кругового цилиндра

© Е.Г. Шейкин, Yang Cheng Wei

Санкт-Петербургский государственный университет, 198904 Санкт-Петербург, Россия e-mail: egsh@pochta.ru

(Поступило в Редакцию 22 декабря 2011 г. В окончательной редакции 4 апреля 2012 г.)

Найдено аналитическое решение электродинамических уравнений для электрического потенциала в локально-ионизованном магнитогидродинамическом МГД течении при поперечном обтекании кругового цилиндра в неоднородном магнитном поле, создаваемом прямолинейным проводником. Получены аналитические формулы для расчета объемной плотности силы Лоренца, действующей на поток в локально-ионизованном МГД-течении, для случая проводящей и непроводящей поверхностей цилиндра. Проанализировано влияние параметра Холла и ширины области МГД-взаимодействия на величину силы Лоренца. Показано, что у поверхности цилиндра в окрестности критической точки при определенных условиях возникает сила Лоренца, не тормозящая, а ускоряющая поток.

Введение

В настоящее время в литературе большое внимание уделяется изучению магнитогидродинамического (МГД) воздействия на поток с целью управления его характеристиками [1-16]. Изучаются возможности управления: потоком в воздухозаборнике летательного аппарата, процессами смешения потоков, процессами в двигателе высокоскоростного летательного аппарата, положением головной ударной волны, тепловыми потоками на обтекаемую поверхность. В большом числе указанных МГД-приложений равновесная проводимость потока пренебрежимо мала, и для осуществления МГД-воздействия на поток необходимо тем или иным способом создать в потоке неравновесную проводимость [4,6,8,17]. При этом поток будет локально ионизован. Геометрия области неравновесной ионизации зависит от способа ионизации потока и от конфигурации магнитного поля. В большинстве рассматриваемых МГДприложений магнитное поле будет неоднородным. Для расчета МГД-воздействия на локально-ионизованный поток в неоднородном магнитном поле необходимо решать систему МГД-уравнений совместно с электродинамическими уравнениями, определяющими распределение потенциала в области МГД-взаимодействия.

В работах [18,19] найдено аналитическое решение для электрического потенциала и получены аналитические выражения для расчета силы Лоренца, действующей на локально-ионизованный МГД-поток в неоднородном магнитном поле создаваемым прямолинейным проводником для случая плоского течения. В [18] показано, что пространственным распределением силы Лоренца можно управлять, прикладывая внешнее электрическое поле. Расчеты локально-ионизованного МГД-течения в [19,20] показали, что возможность управления пространственным распределением силы Лоренца очень важна, так как позволяет повысить эффективность МГД-управления течением.

В настоящей работе будут получены аналитические формулы для расчета электрического потенциала и силы Лоренца, действующей на поток в локальноионизованном МГД-течении при поперечном обтекании цилиндра. Исследовано влияние граничных условий на поверхности цилиндра, параметра Холла, размеров области МГД-взаимодействия, величины приложенного электрического поля на силу Лоренца.

Уравнение для электрического потенциала в локально-ионизованном МГД-течении в неоднородном магнитном поле

В качестве неоднородного магнитного поля будем рассматривать поле, создаваемое прямолинейным проводником. Геометрия задачи и основные обозначения показаны на рис. 1. Рассматривается локально-ионизованное МГД-течение. Предполагается, что плазма вокруг цилиндра существует только в ограниченной области: $r_0 < r < r_1$. Проводимость потока вне этой области равна нулю. Рассматривается двумерное приближение, в котором характеристики МГД-течения, электрического и магнитного полей, а также токи в плазме не зависят от координаты z. Магнитное поле создается прямолинейным проводником, направленным вдоль оси z и проходящим через центр координат в точке (0,0), совпадающей с осью симметрии кругового цилиндра радиуса r₀. Ограничимся рассмотрением режимов с малым значением магнитного числа Рейнольдса. В этом случае магнитное поле, индуцируемое плазменными токами, много меньше внешнего магнитного поля, и при расчетах магнитного поля в потоке индуцированным магнитным полем

Рис. 1. Геометрия, используемая для нахождения электрического потенциала в МГД-течении в неоднородном магнитном поле, создаваемом прямолинейным током I_z , при поперечном обтекании цилиндра радиуса r_0 .

можно пренебречь. В рассматриваемом приближении, радиальная зависимость величины магнитной индукции в области МГД-взаимодействия может быть определена следующим соотношением: $B = B_0 r_0/r$, где B_0 — величина магнитной индукции на границе с поверхностью цилиндра.

Для решения электродинамической задачи используем цилиндрическую систему координат, в которой магнитное поле имеет более простой вид

$$B_r = 0, \ B_{\varphi} = B_0 \frac{r_0}{r}, \ B_z = 0.$$
 (1)

Нижние индексы обозначают проекции вектора на соответствующие оси в цилиндрической системе координат.

Для нахождения пространственного распределения электрического потенциала в области МГД-течения необходимо решить уравнение непрерывности для плотности электрического тока в плазме **j** совместно с обобщенным законом Ома [21]. Рассматриваем стационарное МГД-течение. Обобщенный закон Ома запишем в следующем виде [21]:

$$\mathbf{j} + \boldsymbol{\mu}_e(\mathbf{j} \times \mathbf{B}) = \boldsymbol{\sigma}(\mathbf{E} + \mathbf{v} \times \mathbf{B}), \qquad (2)$$

где **В** — магнитная индукция, **E** — электрическое поле, **v** — скорость потока, μ_e — подвижность электронов, σ — проводимость потока. Проекции плотности тока, определяемые обобщенным законом Ома (2) для неоднородного магнитного поля (1), согласно [18], могут быть записаны в следующем виде:

$$j_{r} = \frac{\sigma B_{0} r_{0} r \left(\frac{rE_{r}}{r_{0}B_{0}} + \beta_{0} \frac{r_{0}}{r} v_{r} + \mu_{e}E_{z}\right)}{r^{2} + \beta_{0}^{2} r_{0}^{2}}, \quad j_{\varphi} = \sigma E_{\varphi},$$

$$j_{z} = \frac{\sigma B_{0} r_{0} r \left(\frac{E_{z}}{B_{0}} \frac{r}{r_{0}} - \mu_{e}E_{r} + v_{r}\right)}{r^{2} + \beta_{0}^{2} r_{0}^{2}}, \quad (3)$$

где $\beta_0 = \mu_e B_0$ — характерное значение параметра Холла, определяемое значением магнитной индукции на поверхности цилиндра.

Уравнение непрерывности тока в цилиндрической системе координат в рассматриваемом двумерном приближении выглядит следующим образом:

div
$$\mathbf{j} = \frac{1}{r} \left(\frac{\partial}{\partial r} (r j_r) + \frac{\partial j_{\varphi}}{\partial \varphi} \right) = 0.$$
 (4)

Уравнение для электрического потенциала Ф получается подстановкой (3) в уравнение непрерывности (4), принимая во внимание, что $\mathbf{E} = -\operatorname{grad} \Phi$. При выводе уравнения для потенциала ограничимся рассмотрением приближения постоянной проводимости потока и подвижности электронов в области МГД-взаимодействия. Также ограничимся рассмотрением слабого уровня МГД-воздействия на поток, при котором можно пренебречь влиянием изменения параметров течения, обусловленным МГД-воздействием на поток, на формирование потенциала в области МГД-взаимодействия. Так как в рассматриваемой модели параметры электрического поля не зависят от координаты z, то уравнение Максвелла rot **E** приводит к требованию постоянства поля E_7 [18]. В этом случае потенциал в цилиндрической системе координат может быть записан в следующем виде: $\Phi(r, \varphi, z) = \Phi(r, \varphi) + C - E_z z$, где C — неопределенная константа.

Подставляя уравнения (3) в уравнение непрерывности (4), будем рассматривать общий случай, полагая, что скорость потока не является постоянной величиной. В результате получим следующее уравнение для электрического потенциала:

$$(r^{2} + \beta_{0}^{2}r_{0}^{2})^{2} \frac{\partial^{2}\Phi}{\partial\varphi^{2}} + r^{4}(r^{2} + \beta_{0}^{2}r_{0}^{2}) \frac{\partial^{2}\Phi}{\partial r^{2}} + r^{3}(r^{2} + 3\beta_{0}^{2}r_{0}^{2}) \frac{\partial\Phi}{\partial r} + r(r^{2} - \beta_{0}^{2}r_{0}^{2}) \frac{\beta_{0}^{2}r_{0}^{2}}{\mu_{e}} v_{r} - (r^{4} + \beta_{0}^{2}r^{2}r_{0}^{2}) \frac{\beta_{0}^{2}r_{0}^{2}}{\mu_{e}} \frac{\partial v_{r}}{\partial r} - 2r^{2}\beta_{0}^{3}r_{0}^{3}E_{z} = 0.$$
(5)

Это уравнение отличается от соответствующего уравнения, полученного в работе [18], наличием члена с производной $\partial v_r / \partial r$. Отсутствие такого члена уравнения в [18] обусловлено тем, что там рассматривалось плоское течение, для которого справедливо условие $\partial v_r / \partial r = 0$.

Численное решение уравнения (5) может быть получено для любого известного распределения скорости в потоке как дозвукового, так и сверхзвукового течений. Аналитическое решение можно получить только в исключительных случаях при наличии простого выражения радиальной скорости через координаты. Наиболее простой, аналитический вид распределения скорости потока при обтекании цилиндра получается в приближении потенциального течения. Согласно [22], радиальная проекция скорости потока, при потенциальном обтекании цилиндра в геометрии, показанной на рис. 1, определяется следующим образом:

$$v_r = V \cos \varphi (1 - (r_0/r)^2),$$
 (6)

где V — скорость потока на бесконечном удалении от цилиндра.

Журнал технической физики, 2013, том 83, вып. 1

Следует отметить, что выражение (6) отвечает приближению невязкого и несжимаемого газа, поэтому его использование будет тем более точным, чем меньше ширина пограничного слоя по сравнению с шириной области МГД-взаимодействия. Условие несжимаемого газа отвечает дозвуковому течению с числом Маха в набегающем потоке M < 0.3 [23]. Для того чтобы определить границы практической применимости результатов, полученных с использованием приближения (6), необходимо отметить, что безотрывное поперечное обтекание цилиндра наблюдается только при малых числах Рейнольдса (Re). При увеличении числа Рейнольдса, начиная с Re = 10, происходит отрыв потока, и движение газа за подветренной стороной обтекаемого цилиндра становится вихревым [24]. Ясно, что в этом случае, практический интерес будут представлять только результаты, полученные в окрестности передней части обтекаемого цилиндра. Более точно область применимости полученных результатов можно оценить, сравнивая экспериментальное распределение давления по поверхности цилиндра с распределением, отвечающим потенциальному приближению. Так, согласно [24], при сверхкритическом значении числа Рейнолдса Re = 6.7 · 10⁵ эти давления достаточно близки вплоть до точки отрыва потока.

Подставим выражение для радиальной проекции скорости v_r (6) в уравнение (5) и, проделав очевидные преобразования, получим следующее уравнение для потенциала $\Phi(r, \varphi)$:

$$(r^{2} + \beta_{0}^{2}r_{0}^{2})^{2}\frac{\partial^{2}\Phi}{\partial\varphi^{2}} + r^{4}(r^{2} + \beta_{0}^{2}r_{0}^{2})\frac{\partial^{2}\Phi}{\partial r^{2}} + r^{3}(r^{2} + 3\beta_{0}^{2}r_{0}^{2})\frac{\partial\Phi}{\partial r} + \frac{(r^{4} - \beta_{0}^{2}r_{0}^{2}(r^{2} + \beta_{0}^{2}r_{0}^{2}) - 3r_{0}^{2}r^{2})}{r}\frac{V\beta_{0}^{2}r_{0}^{2}}{\mu_{e}}\cos\varphi - 2r^{2}\beta_{0}^{3}r_{0}^{3}E_{z} = 0.$$
(7)

Граничные условия на поверхности цилиндра при $r = r_0$ зависят от свойств поверхности. Будем рассматривать два случая поверхности: идеальный проводник (проводящая поверхность) и идеальный изолятор (непроводящая поверхность). На проводящей поверхности должно выполняться условие эквипотенциальности, в случае же непроводящей поверхности будем использовать условие непротекания тока через эту поверхность. Что касается условий на внешней границе, то в рассматриваемом приближении проводимость потока существует только в области $r_0 < r < r_1$, и, следовательно, ток через поверхность $r = r_1$ равен нулю.

При решении уравнения (7) будем рассматривать два типа граничных условий. В случае непроводящей поверхности цилиндра используем следующие граничные условия:

$$j_r|_{r=r_0, r=r_1} = 0.$$
 (8a)

В случае проводящей поверхности цилиндра используем следующие граничные условия:

$$E_{\varphi}\Big|_{r=r_0} = 0, \quad j_r\Big|_{r=r_1} = 0.$$
 (8b)

Решение уравнения для электрического потенциала в локально-ионизованном МГД-течении в неоднородном магнитном поле

Решение неоднородного дифференциального уравнения в частных производных (7) находим как сумму общего решения однородного уравнения $\Phi_0(r, \varphi)$ и частного решения неоднородного уравнения $\Phi_1(r, \varphi)$ в форме $\Phi(r, \varphi) = \Phi_1(r, \varphi) + \Phi_0(r, \varphi)$. При этом однородное уравнение относительно функции $\Phi_0(r, \varphi)$ имеет следующий вид:

$$(r^{2} + \beta_{0}^{2}r_{0}^{2})^{2} \frac{\partial^{2}\Phi_{0}}{\partial\varphi^{2}} + r^{4}(r^{2} + \beta_{0}^{2}r_{0}^{2}) \frac{\partial^{2}\Phi_{0}}{\partial r^{2}} + r^{3}(r^{2} + 3\beta_{0}^{2}r_{0}^{2}) \frac{\partial\Phi_{0}}{\partial r} = 0.$$
 (9)

Частное решение неоднородного уравнения (7) ищем в следующем виде: $\Phi_1(r, \varphi) = f_1(r)V\cos\varphi + f_2(r)E_z$. Подставив данное выражение в уравнение (7), получим следующие уравнения для функций $f_1(r)$ и $f_2(r)$:

$$\mu_{e}r^{5}(r^{2} + \beta_{0}^{2}r_{0}^{2})\frac{d^{2}f_{1}(r)}{dr^{2}} + \mu_{e}r^{4}(r^{2} + 3\beta_{0}^{2}r_{0}^{2})\frac{df_{1}(r)}{dr}$$

$$- \mu_{e}r(r^{2} + \beta_{0}^{2}r_{0}^{2})^{2}f_{1}(r)$$

$$+ \beta_{0}^{2}r_{0}^{2}(r^{4} - (\beta_{0}^{2} + 3)r_{0}^{2}r^{2} - \beta_{0}^{2}r_{0}^{4}) = 0, \quad (10)$$

$$r^{2}(r^{2} + \beta_{0}^{2}r_{0}^{2})\frac{d^{2}f_{2}(r)}{dr^{2}} + r(r^{2} + 3\beta_{0}^{2}r_{0}^{2})\frac{df_{2}(r)}{dr}$$

$$- 2\beta_{0}^{3}r_{0}^{3} = 0. \quad (11)$$

Частное решение уравнения (10) будем искать в виде $f_1(r) = A_1/r + A_2 r$. Подставив данное выражение в уравнение (10), получаем следующее уравнение:

$$(1 + \mu_e A_2)\beta_0^2 r_0^2 r^4 - (\beta_0^2 r_0^2 (1 + \mu_e A_2) + 3(r_0^2 + \mu_e A_1))\beta_0^2 r_0^2 r^2 - (r_0^2 + \mu_e A_1)\beta_0^4 r_0^4 = 0.$$
(12)

Очевидным решением уравнения (12) является $A_1 = -r_0^2/\mu_e$, $A_2 = -1/\mu_e$. Таким образом, получаем $f_1(r) = -(r^2 + r_0^2)/(\mu_e r)$. Что касается уравнения (11), то в [19] получено общее решение данного уравнения. В качестве частного решения возьмем решение из [19] при нулевых значениях неопределенных констант, в результате получим $f_2(r) = (\beta_0 r_0)^3/(2r^2)$. Таким образом, частное решение уравнения (7) может быть записано в следующем виде:

$$\Phi_1(r,\varphi) = -V\cos\varphi \,\frac{r^2 + r_0^2}{\mu_e r} + E_z \,\frac{(\beta_0 r_0)^3}{2r^2}.\tag{13}$$

Журнал технической физики, 2013, том 83, вып. 1

Решение однородного уравнения (9) находится методом разделения переменных. Искомое решение представляем в виде суммы $\Phi_0(r, \varphi) = \sum_{k=0}^{\infty} R_k(r) \Psi_k(\varphi)$. Согласно [18], система уравнений для нахождения функций $R_k(r)$ и $\Psi_k(\varphi)$ имеет следующий вид:

$$\frac{d^2 R_k}{dr^2} + \frac{r^2 + 3\beta_0^2 r_0^2}{r(r^2 + \beta_0^2 r_0^2)} \frac{dR_k}{dr} - k^2 \frac{r^2 + \beta_0^2 r_0^2}{r^4} R_k = 0, \quad (14)$$

$$\frac{d^2\Psi_k}{d\varphi^2} + k^2\Psi_k = 0.$$
(15)

Решение уравнения (14) для значений *k* ≥ 1 получено в [18] и имеет следующий вид:

$$R_k(r) = C_1^k Z_1(k, \beta_0 r_0/r) + C_2^k Z_2(k, \beta_0 r_0/r), \ k \ge 1. \ (16)$$

Здесь C_i^k — неопределенные константы, функции Z_1 и Z_2 являются комбинацией модифицированных функций Бесселя и определяются следующим образом:

$$Z_1(k, x) = I_k(kx) + xI_{k+1}(kx),$$

$$Z_2(k, x) = K_k(kx) - xK_{k+1}(kx).$$

При k = 0 уравнение (14) принимает следующий вид:

$$\frac{d^2R_0}{dr^2} + \frac{r^2 + 3\beta_0^2 r_0^2}{r(r^2 + \beta_0^2 r_0^2)} \frac{dR_0}{dr} = 0$$

Решение данного уравнения с использованием результатов из [25] может быть представлено в следующем виде:

$$R_0(r) = C_1^0 + C_2^0 \left(\frac{1}{2} \left(\frac{\beta_0 r_0}{r} \right)^2 + \ln \left(\frac{\beta_0 r_0}{r} \right) \right).$$
(17)

Решение уравнения (15) при значениях $k \ge 1$ имеет вид

$$\Psi_k(\varphi) = C_3^k \cos k\varphi + C_4^k \sin k\varphi, \quad k \ge 1.$$
 (18)

При k = 0 имеем

$$\Psi_0(\varphi) = C_3^0 + C_4^0 \varphi. \tag{19}$$

Из условий задачи, очевидно, что потенциал должен быть 2π -периодической функцией угла φ , в частности, $\Phi(r, 0) = \Phi(r, 2\pi)$. Отсюда можно заключить, что $C_4^0 = 0$.

Общее решение неоднородного дифференциального уравнения (7) может быть записано в следующем виде:

$$\Phi(r,\varphi) = \Phi_1 + \Phi_0 = -V \cos \varphi \, \frac{r^2 + r_0^2}{\mu_e r} + E_z \frac{(\beta_0 r_0)^2}{2r^2} + \sum_{k=0}^{\infty} R_k(r) \Psi_k(\varphi), \qquad (20)$$

где функции $R_k(r)$ и $\Psi_k(\phi)$ определяются уравнениями (16)–(19).

Для нахождения неопределенных констант C_i^k в $R_k(r)$ и $\Psi_k(\phi)$ используем граничные условия (8). Выражение (3), определяющее радиальный ток через компоненты электрического поля, позволяет с учетом того, что $E_r = -\partial \Phi/\partial r$, привести граничное условие $j_r|_{r=r_k} = 0$ к условию для потенциала. В результате граничные условия (8a) для непроводящей поверхности цилиндра принимают следующий вид:

$$\left. \frac{\partial \Phi}{\partial r} \right|_{r=r_0} = \beta_0 E_z, \tag{21}$$

$$\left.\frac{\partial \Phi}{\partial r}\right|_{r=r_1} = \frac{\beta_0 r_0}{r_1} E_z + \left(\frac{\beta_0 r_0}{r_1}\right)^2 \frac{V \cos \varphi}{\mu_e} \left(1 - \left(\frac{r_0}{r_1}\right)^2\right).$$

Подставив решение (20) в граничные условия (21), нетрудно получить константы C_i^k в следующем виде:

$$C_{2}^{0} = -r_{0}, \quad C_{3}^{0} = \beta_{0}E_{z}, \quad C_{3}^{1} = V/\mu_{e},$$

$$C_{1}^{1} = -\frac{(r_{1} - r_{0}^{2}/r_{1})K_{1}(\beta_{0})}{I_{1}(\beta_{0}r_{0}/r_{1})K_{1}(\beta_{0}) - I_{1}(\beta_{0})K_{1}(\beta_{0}r_{0}/r_{1})},$$

$$C_{2}^{1} = \frac{(r_{1} - r_{0}^{2}/r_{1})I_{1}(\beta_{0})}{I_{1}(\beta_{0}r_{0}/r_{1})K_{1}(\beta_{0}) - I_{1}(\beta_{0})K_{1}(\beta_{0}r_{0}/r_{1})}.$$
(22)

Все остальные константы C_i^k равны нулю. В результате решение уравнения (7) для непроводящей поверхности цилиндра может быть записано следующим образом:

$$\Phi(r,\varphi) = -\beta_0 r_0 E_z \ln\left(\frac{\beta_0 r_0}{r}\right) + \frac{V \cos\varphi}{\mu_e} \left(C_1^1 Z_1(1,\beta_0 r_0/r) + C_2^1 Z_2(1,\beta_0 r_0/r) - \frac{r^2 + r_0^2}{r}\right).$$
(23)

Теперь получим выражения для констант C_i^k с использованием граничных условий для проводящей поверхности цилиндра (8b). Принимая во внимание, что $E_{\varphi} = -(1/r)\partial \Phi/\partial \varphi$, запишем граничные условия (8b) для проводящей поверхности цилиндра в следующем виде:

$$\left. \frac{\partial \Phi}{\partial \varphi} \right|_{r=r_0} = 0.$$
 (24)

$$\left.\frac{\partial \Phi}{\partial r}\right|_{r=r_1} = \frac{\beta_0 r_0}{r_1} E_z + \left(\frac{\beta_0 r_0}{r_1}\right)^2 \frac{V \cos \varphi}{\mu_e} \left(1 - \left(\frac{r_0}{r_1}\right)^2\right).$$

Подставив решение (20) в граничные условия (24), нетрудно получить неопределенные константы C_i^k в следующем виде:

$$C_{2}^{0} = -r_{0}, \quad C_{3}^{0} = \beta_{0}E_{z}, \quad C_{3}^{1} = V/\mu_{e},$$

$$C_{1}^{1} = -\frac{2K_{1}(\beta_{0}r_{0}/r_{1})r_{0} + (r_{1} - r_{0}^{2}/r_{1})Z_{2}(1,\beta_{0})}{Z_{2}(1,\beta_{0})I_{1}(\beta_{0}r_{0}/r_{1}) - Z_{1}(1,\beta_{0})K_{1}(\beta_{0}r_{0}/r_{1})},$$

$$C_{2}^{1} = \frac{2I_{1}(\beta_{0}r_{0}/r_{1})r_{0} + (r_{1} - r_{0}^{2}/r_{1})Z_{2}(1,\beta_{0})}{Z_{2}(1,\beta_{0})I_{1}(\beta_{0}r_{0}/r_{1}) - Z_{1}(1,\beta_{0})K_{1}(\beta_{0}r_{0}/r_{1})}.$$
(25)

Все остальные константы C_i^k равны нулю.

Журнал технической физики, 2013, том 83, вып. 1

Сравнение коэффициентов, определяемых уравнениями (25) и (22), показывает, что отличие наблюдается только для коэффициентов C_1^1 и C_2^1 . Таким образом, решение уравнения (7) в форме (20) описывает как случай непроводящей поверхности цилиндра, если C_1^1 и C_2^1 определяются уравнениями (22), так и случай проводящей поверхности цилиндра, если эти константы определяются уравнениями (25).

Анализ полученного решения. Расчет силы Лоренца, действующей на поток

На рис. 2–4 показано распределение потенциала в области МГД-взаимодействия в случае непроводящей и проводящей поверхности цилиндра при значении $\beta_0 = 3$. Потенциал представлен в безразмерной форме, нормированный на величину Vr_0/μ_e : $\Phi_n = \frac{\Phi}{Vr_0/\mu_e}$. Из рис. 2–4 следует, что потенциал симметричен относительно оси x при любом значении поля E_z . Таким образом, потенциал является четной функцией координаты y. При значении $E_z = 0$ (рис. 2, 3) распределение потенциала выглядит симметричным относительно оси y, но при переходе из левой полуплоскости в правую происходит изменение знака потенциала. Таким образом, при $E_z = 0$ потенциал и лотенциала. Таким образом, при $E_z = 0$ потенциал является нечетной функцией координаты x. При отличном от нуля поле E_z , согласно рис. 4, происходит нарушение указанной симметрии.

Отметим, что распределения потенциала для непроводящей и проводящей поверхностей цилиндра сильно отличаются в окрестности обтекаемого цилиндра. Для представленных результатов эта область отвечает диапазону значений $1 < r/r_0 < 2$. В случае проводящей по-

Рис. 2. Распределение электрического потенциала в области МГД-взаимодействия при непроводящей поверхности цилиндра при значении параметров: $E_z = 0$, $r_1/r_0 = 5.5$, $\beta_0 = 3$.

Рис. 3. Распределение электрического потенциала в области МГД-взаимодействия при проводящей поверхности цилиндра при значении параметров: $E_z = 0$, $r_1/r_0 = 5.5$, $\beta_0 = 3$.

Рис. 4. Распределение электрического потенциала в области МГД-взаимодействия при проводящей поверхности цилиндра при значении параметров: $E_z = -0.1VB_0$, $r_1/r_0 = 5.5$, $\beta_0 = 3$.

верхности цилиндра (рис. 3, 4) потенциал поверхности постоянен и принимает экстремальные значения вблизи проводящей поверхности. В случае же непроводящей поверхности цилиндра (рис. 2) потенциал принимает экстремальные значения на границах области МГДвзаимодействия, и поверхность цилиндра не является эквипотенциальной.

Рис. 5. Распределение электрического потенциала в области МГД-взаимодействия, при значении параметров: $\varphi = \pi$, $E_z = 0$, $r_1/r_0 = 5.5$. Значения β_0 указаны у кривых. Сплошные кривые отвечают непроводящей поверхности цилиндра, штриховые — проводящей поверхности цилиндра.

На рис. 5 приведены зависимости потенциала от координаты x, характеризующие радиальную зависимость потенциала при $\phi = \pi$. Из рис. 5 следует, что для случая с проводящей поверхностью цилиндра потенциал немонотонно зависит от радиуса, достигая максимального значения недалеко от поверхности цилиндра. Положение максимума удаляется от цилиндра при увеличении β_0 . Из приведенных на рис. 5 результатов видно, что величина данного максимума немонотонно зависит от параметра β_0 . В случае непроводящей поверхности цилиндра потенциал монотонно изменяется по радиусу. Максимальное значение потенциала достигается на поверхности цилиндра. Величина данного максимума также немонотонно зависит от параметра β_0 . Из приведенных результатов следует, что увеличение параметра β_0 приводит к уменьшению величины поля $E_r = -\partial \Phi / \partial r$ около поверхности цилиндра. Противоположная тенденция наблюдается около внешней границы области МГД-взаимодействия, где увеличение параметра β_0 приводит к росту величины E_r . Из рис. 5 видно, что в диапазоне $-r_1 < x < -2r_0$ различия между потенциалами, рассчитанными для различных граничных условий на поверхности цилиндра, уменьшаются с ростом параметра β_0 .

Сила Лоренца, действующая на МГД-течение при заданном распределении магнитного поля, определяется токами, протекающими в области МГД-взаимодействия, с использованием соотношения $\mathbf{F} = \mathbf{j} \times \mathbf{B}$, где \mathbf{F} — объемная плотность силы Лоренца. Подставив выражение для потенциала (23) в уравнения (3) для плотностей

токов, получим следующие выражения для проекций плотности тока в плоскости *xy*:

$$j_{r} = \frac{\sigma B_{0} V}{\beta_{0}} \left[\frac{1}{r} \left(C_{1}^{1} I_{1} \left(\frac{\beta_{0} r_{0}}{r} \right) + C_{2}^{1} K_{1} \left(\frac{\beta_{0} r_{0}}{r} \right) \right) + 1 - \left(\frac{r_{0}}{r} \right)^{2} \right] \cos \varphi,$$

$$j_{\varphi} = \frac{\sigma B_{0} V}{\beta_{0}} \left[\frac{1}{r} \left(C_{1}^{1} Z_{1}(1, \beta_{0} r_{0}/r) + C_{2}^{1} Z_{2}(1, \beta_{0} r_{0}/r) \right) - 1 - \left(\frac{r_{0}}{r} \right)^{2} \right] \sin \varphi.$$
(26)

На рис. 6,7 показаны линии тока в области МГД-взаимодействия для случая непроводящей и проводящей поверхностей цилиндра. В случае непроводящей поверхности (рис. 6) токи в плоскости *ху* имеют вихревой характер и ограничены только областью МГД-взаимодействия. В случае же проводящей поверхности цилиндра замыкание токов происходит через поверхность цилиндра.

Плотность тока j_z , которая определяет силу Лоренца, действующую в плоскости xy, выразим через радиальную плотность тока j_r , используя уравнение (3):

$$j_z = \sigma \left(E_z + B_0 \, \frac{r_0}{r} \, v_r \right) - j_r \beta_0 \, \frac{r_0}{r}, \tag{27}$$

где j_r задается выражением (26), а v_r — выражением (6).

Рис. 6. Линии тока в области МГД-взаимодействия при непроводящей поверхности цилиндра при значении параметров: $E_z = 0$, $r_1/r_0 = 5.5$, $\beta_0 = 3$.

Рис. 7. Линии тока в области МГД-взаимодействия при проводящей поверхности цилиндра при значении параметров: $E_z = 0, r_1/r_0 = 5.5, \beta_0 = 3.$

Рис. 8. Сила Лоренца, действующая вдоль линии торможения в области МГД-взаимодействия, при непроводящей поверхности цилиндра при значении параметров: $E_z = 0$, $r_1/r_0 = 5.5$. Значения β_0 указаны у кривых.

Магнитное поле имеет только одну ненулевую компоненту B_{φ} , вследствие этого проекция силы Лоренца $\mathbf{F} = \mathbf{j} \times \mathbf{B}$ в плоскости *xy* имеет только радиальную компоненту, определяемую следующим соотношением: $F_r = -j_z B_{\varphi}$. Проекции силы Лоренца в декартовой системе координат определяются следующим образом: $F_x = F_r \cos \varphi, F_v = F_r \sin \varphi$. МГД-управление потоком часто рассматривается как способ снижения теплового потока на поверхность за счет МГД-торможения потока [9,15]. В этой связи наибольший интерес представляет исследование силы Лоренца вдоль линии торможения от внешней границы плазмы до критической точки, расположенной на передней части цилиндра. Согласно рис. 1, линия торможения совпадает с осью *x* при $\phi = \pi$. На рис. 8 показана сила Лоренца F_x, нормированная на величину $F_0 = \sigma B_0^2 V$, при различных параметрах β_0 для случая непроводящей поверхности цилиндра. Из рис. 8 следует, что на поверхности цилиндра сила Лоренца равна нулю. Отметим, что на границах области ($x = -r_0$) и $x = -r_1$) сила Лоренца не зависит от параметра Холла β_0 . Такое поведение силы Лоренца $F_x = -j_z B_{\varphi} \cos \varphi$ легко понять, анализируя выражение (27) для плотности тока j_z . Так как при непроводящей поверхности цилиндра радиальный ток j_r на границах области равен нулю, то, согласно (27), плотность тока j_z не зависит от β_0 на границах области МГД-взаимодействия. Следовательно, и сила Лоренца не зависит от β_0 на границах области МГД-взаимодействия. Кроме того, из (27) следует, что при $E_z = 0$ плотность тока j_z на границах области пропорциональна радиальной скорости потока v_r. Так как на поверхности цилиндра $v_r = 0$, то и сила Лоренца там также обращается в нуль. Отрицательное значение силы Лоренца в области МГД-взаимодействия показывает, что сила Лоренца приводит к торможению набегающего на цилиндр потока. Наличие минимума в зависимости силы Лоренца от координаты обусловлено тем, что радиальная скорость потока уменьшается с приближением к поверхности цилиндра, а магнитное поле, наоборот, возрастает.

Из уравнения (27) следует, что в том случае, когда плотность тока j_r на поверхности цилиндра не равна нулю, или $E_7 \neq 0$, возможно появление отличной от нуля силы Лоренца Fr на границе с поверхностью цилиндра. Но, так как на поверхности цилиндра $v_r = 0$, то работа силы Лоренца на этой границе будет равна нулю. Учитывая, что скорость потока v_r достаточно сильно меняется в окрестности поверхности цилиндра, представляется, что более целесообразно анализировать не силу Лоренца, а работу, которую данная сила совершает. Обозначим работу, совершаемую силой Лоренца в единицу времени в единице объема, как $W = F_r v_r$. На рис. 9 показана величина W, нормированная на величину $\sigma B_0^2 V_0^2$: $W_n = W / (\sigma B_0^2 V_0^2)$, при различных значениях параметра β_0 для случаев с непроводящей и проводящей поверхностью цилиндра. Из рис. 9 видно, что в случае непроводящей поверхности цилиндра $W_n < 0$. Это показывает, что сила Лоренца, при данных условиях приводит к торможению потока. В случае проводящей поверхности цилиндра имеется узкая приповерхностная область, где $W_n > 0$ и, следовательно, сила Лоренца приводит к ускорению потока в приповерхностном слое.

На рис. 10 показаны аналогичные зависимости W_n от координаты для области МГД-взаимодействия с $r_1/r_0 = 1.5$. Сравнение рис. 9 и 10 показывает, что сужение области МГД-взаимодействия приводит к уменьше-

Рис. 9. Величина W_n вдоль линии торможения в области МГД-взаимодействия при значении параметров: $E_z = 0$, $r_1/r_0 = 5.5$. Значения β_0 указаны у кривых. Сплошные кривые отвечают непроводящей поверхности цилиндра, штриховые — проводящей поверхности цилиндра.

Рис. 10. Величина W_n вдоль линии торможения в области МГД-взаимодействия при значении параметров: $E_z = 0$, $r_1/r_0 = 5.5$. Значения β_0 указаны у кривых. Сплошные кривые отвечают непроводящей поверхности цилиндра, штриховые — проводящей поверхности цилиндра.

Рис. 11. Нормированная величина работы A_n , совершаемая силой Лоренца вдоль линии торможения на промежутке $[-r_1, -r_0]$, в зависимости от параметра β_0 при $E_z = 0$. $I - r_1/r_0 = 5.5$; $2 - r_1/r_0 = 1.5$. Сплошные кривые отвечают непроводящей поверхности цилиндра, штриховые — проводящей поверхности цилиндра.

нию влияния параметра Холла β_0 на величину W_n , а следовательно, и на силу Лоренца. Для количественной оценки этого эффекта проведем сравнение работы

$$A = \int_{-r_1}^{-r_0} W(x) dx,$$

совершаемой силой Лоренца на рассматриваемом промежутке МГД-взаимодействия, для различных условий. Работа, совершаемая силой Лоренца на промежутке $[-r_1, -r_0]$, представлена на рис. 11 в относительной форме. Величина А_n является отношением величины А для данных условий к максимальной для соответствующего значения r_1/r_0 величине А. Из результатов, представленных на рис. 11, следует, что работа силы Лоренца по торможению потока в случае непроводящей поверхности цилиндра всегда больше, чем в случае проводящей поверхности цилиндра. При $r_1/r_0 = 5.5$ увеличение параметра Холла β_0 от 1 до 10 приводит к снижению величины A_n примерно в 3 раза. Для случая же $r_1/r_0 = 1.5$ величина A_n снижается только в 1.5 раза. Таким образом, результаты рис. 11 показывают, что уменьшение ширины области МГД-взаимодействия позволяет снизить влияние параметра Холла на силу Лоренца.

Влияние электрического поля E_z на силу Лоренца демонстрирует рис. 12. Согласно приведенным ре-

Рис. 12. Величина W_n вдоль линии торможения в области МГД-взаимодействия при значении параметров: $\beta_0 = 3$, $r_1/r_0 = 5.5$. Значения $E_z/(VB_0)$ указаны у кривых.

зультатам, видно, что наложение поля $E_z < 0$ на область МГД-взаимодействия приводит к увеличению работы силы Лоренца по торможению потока. Наложение же поля $E_z > 0$ уменьшает работу силы Лоренца по торможению потока, а около поверхности цилиндра возникает область, где сила Лоренца ускоряет поток.

Заключение

В заключение перечислим основные результаты работы. Получено общее решение электродинамических уравнений для электрического потенциала в локальноионизованном МГД-течении при поперечном обтекании кругового цилиндра в неоднородном магнитном поле, создаваемом прямолинейным проводником. Получены аналитические формулы, позволяющие рассчитать объемную плотность силы Лоренца, действующей на поток в локально-ионизованном МГД-течении, для случая проводящей и непроводящей поверхностей цилиндра. Показано, что МГД-воздействие на локально-ионизованное течение около цилиндра может быть использовано для торможения набегающего потока. Показано, что у поверхности цилиндра в окрестности критической точки в случае проводящей поверхности цилиндра, а также при положительном значении поля E_z возникает сила Лоренца, не тормозящая, а ускоряющая поток. Проанализировано влияние параметра Холла и ширины области МГД-взаимодействия на величину силы Лоренца. Показано, что увеличение параметра Холла приводит к снижению силы Лоренца, тормозящей поток. Влияние параметра Холла на силу Лоренца может быть снижено с помощью уменьшения ширины области МГДвзаимодействия.

Список литературы

- Фрайштадт В.Л., Куранов А.Л., Шейкин Е.Г. // ЖТФ. 1998. Т. 68. Вып. 11. С. 43–47.
- [2] Kopchenov V.I., Vatazhin A.B., Gouskov O.V. // AIAA Paper 99–4971. 9th International Space Planes and Hypersonic Systems and Technologies Conference. Norfolk, 1999.
- [3] Головачев Ю.П., Сущих С.Ю. //ЖТФ. 2000. Т. 70. Вып. 2. С. 28–33.
- [4] Macheret S.O., Shneider M.N., Miles R.B. // AIAA Paper 2001–0492. 39th AIAA Aerospace Science Meeting and Exhibit. Reno, 2001.
- [5] Bityurin V., Bocharov A., Baranov D., Leonov S. // AIAA Paper 2002–0492. 40th AIAA Aerospace Science Meeting and Exhibit. Reno, 2002.
- [6] Kuranov A.L., Sheikin E.G. // J. Spacecraft Rockets. 2003. Vol. 40. N 2. P. 174–182.
- [7] Gaitonde D. // AIAA Paper 2003–0172. 41st AIAA Aerospace Science Meeting and Exhibit. Reno, 2003.
- [8] Macheret S.O., Shneider M.N., Miles R.B // AIAA Paper 2003–3763. 34th AIAA Plasmadynamics and Lasers Conference. Orlando, 2003.
- [9] Lineberry J.T., Bityurin V.A., Bocharov A.N., Baranov D.S., Vatazhin A.B., Kopchenov V.I., Gouskov O.B., Alferov V.I., Boushmin A.S. // Proc. of the 3rd Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications. Moscow, 2001. P. 15–25.
- [10] Taylor T., Riggins D.W. // AIAA Paper 2004–0859. 42nd Aerospace Sciences Meeting and Exhibit. Reno, 2004.
- [11] Васильева Р.В., Ерофеев А.В., Лапушкина Т.А., Поняев С.А., Бобашев С.В., Ван-Ви Д. // ЖТФ. 2005. Т. 75. Вып. 9. С. 27–33.
- [12] Sheikin E.G., Kuranov A.L. // AIAA Paper 2005–3223. AIAA/CIRA 13th International Space Planes and Hypersonic Systems and Technologies Conference. Capua, 2005.
- [13] Adamovich I., Nishihara M. // AIAA Paper 2006–1004. 44th Aerospace Sciences Meeting and Exhibit. Reno, 2006.
- [14] Biturin V., Bocharov A., Baranov D. // AIAA Paper 2006–1008. 44th Aerospace Sciences Meeting and Exhibit. Reno, 2006.
- [15] Битюрин В.А., Бочаров А.Н. // Изв. РАН. МЖГ. 2006. № 5. С. 188–203.
- [16] Sheikin E.G. // AIAA Paper 2007–1379. 45th Aerospace Sciences Meeting and Exhibit. Reno, 2007.
- [17] Шейкин Е.Г. // ЖТФ. 2007. Т. 77. Вып. 5. С. 1–9.
- [18] Шейкин Е.Г. // ЖТФ. 2009. Т. 79. Вып. 2. С. 58-65.
- [19] Sheikin E.G. // J. Phys. D: Appl. Phys. 2009. Vol. 42. P. 035 201.
- [20] Sheikin E.G. // AIAA Paper 2010–0832. 48th Aerospace Sciences Meeting and Exhibit. Orlando, 2010.
- [21] Бреев В.В., Губарев А.В., Панченко В.П. Сверхзвуковые МГД-генераторы. М.: Энергоатомиздат, 1988. 240 с.

- [22] White F.M. Fluid Mechanics. 4th Edition. McGraw-Hill, 1999.826 p.
- [23] Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974. 712 с.
- [24] Чжэн П. Отрывные течения. Т. 1. М.: Мир, 1972. 300 с.
- [25] Зайцев В.Ф., Полянин А.Д. Справочник по обыкновенным дифференциальным уравнениям. М.: Физматлит., 2001. 576 с.