01

Модель векторной гравиметрии на базе корректируемой двухкомпонентной инерциальной навигационной системы

© А.С. Девятисильный

Институт автоматики и процессов управления Дальневосточного отделения РАН, 690041Владивосток, Россия e-mail: devyatis@iacp.dvo.ru

(Поступило в Редакцию 21 февраля 2012 г.)

Предложено преобразование корректируемой трехкомпонентной инерциальной навигационной системы в двухкомпонентную систему с сохранением функции оценки напряженности гравитационного поля Земли. Приведены результаты вычислительного эксперимента.

Введение

В работе [1] исследована модель векторной гравиметрической системы, сконструированной на базе трехкомпонентной (3D) инерциальной навигационной системы (ИНС), корректируемой измерениями, доставляемыми навигационной спутниковой системой (НСС) типа ГЛОНАСС и бортовой астросистемой. В такой корректиируемой 3D-ИНС показания трех ньютонометров (акселерометров), представляющие измеренные значения трех компонент вектора кажущегося ускорения [2], непосредственно используются в алгоритме функционирования системы при интегрировании векторного уравнения Ньютона или динамической группы уравнений (ДГУ) [3], моделирующих движение материальной точки в гравитационном поле Земли (GE-поле). Наличие в составе интегрированной системы (ИС) астросистемы обусловливает независимое решение кинематической задачи — оценки параметров вращения приборного координатного трехгранника, что и было учтено при исследовании модели ИС. Основное внимание уделено второй ее части, динамической, которая представлена ДГУ и моделями измерений, доставляемых НСС; результаты анализа именно этой части модели непосредственно характеризуют возможности функции оценки напряженности GE-поля.

В настоящей работе показано, как возможность оценки напряженности GE-поля может быть сохранена в рамках представлений о двухкомпонентных (2D) ИНС, отличающихся от 3D-ИНС тем, что в их алгоритме функционирования используются измерения только двух "горизонтальных" ньютонометров и соответственно интегрируется только часть уравнений из ДГУ.

Основные модели

Как и в [1], примем, что астросистема самостоятельно решает проблему оценки ориентации системы отсчета, в которой интегрируются уравнения движения объектаносителя. Это дает возможность далее обращаться только к ДГУ и спутниковой позиционной информации, представив исходную идеализированную (невозмущенную погрешностями) математическую модель обратной задачи, решаемой ИС, в форме уравнений типа "состояние—измерение"

$$\begin{aligned} \dot{q}_{i} &= -e_{ikj}\omega_{k}q_{j} + p_{i}, \quad q_{i}(0) = q_{i0}, \\ \dot{p}_{i} &= -e_{ikj}\omega_{k}p_{j} + G_{i}(\mathbf{q}) + F_{i}, \quad p_{i}(0) = p_{i0}, \\ z_{i} &= q_{i}, \quad i, j, k = \overline{1, 3}, \end{aligned}$$
(1)

где $q_i, p_i, G_i, F_i, \omega_i, z_i$ — компоненты соответственно векторов **q** (радиус-вектор местоположения объектаносителя), **G**(**q**) — напряженность GE-поля, **F** — равнодействующая удельных сил негравитационной природы или кажущееся ускорение, ω — абсолютная угловая скорость вращения правой ортогональной системы отсчета $oq = oq_q q_2 q_3$, в проекции на оси которой в (1) записаны все векторы, **z** — измеренное HCC значение радиуса-вектора места объекта-носителя, c_{ikj} — символ Леви-Чивита (здесь и далее устанавливается правило суммирования по повторяющимся индексам).

Не нарушая общности, примем, что система отсчета oq является геоцентрической с осью oq_3 , направленной по радиусу-вектору объекта-носителя, и осями oq_1 и oq_2 , направленными соответственно на восток и север, оси системы oq коллинеарны осям сопровождающего приборного трехгранника, физически реализуемого на борту подвижного объекта,

При переходе к модели идеализированной 2D-системы с учетом ориентации координатных осей приборного трехгранника в уравнениях (1) полагаем $i = \overline{1, 2}$, $|\mathbf{q}| = q_3 = r$, $z_3 = r$, $\mathbf{G}(\mathbf{q}) = \mathbf{G}(q_1, q_2, z_3) = \mathbf{G}(\mathbf{x}, r)$, где $\mathbf{x} = (q_1, q_2)^T$, $p_3 = \dot{z}_3 - \omega_2 q_1 + \omega_1 q_2$, т.е., что существенно, переход к новой модели требует оценки производной измеряемой НСС координаты q_3 , т.е. \dot{z}_3 .

Обращаясь к физическим реалиям, отметим наличие погрешностей в измерениях векторов ω , F и q, в определении начальных значений q_0 и p_0 , а также в представлениях о векторе G(q). Полагая достаточно малыми все эти погрешности, выполним переход к линейным представлениям в вариациях, сформулировав,

$$\delta \dot{q}_{i} = -e_{ikj}\omega_{k}\delta q_{j} + \delta p_{i} - e_{ikj}v_{k}q_{i}, \quad \delta q_{i}(0) = \delta q_{i0},$$

$$\delta \dot{p}_{i} = \left(\frac{\partial G_{i}(\mathbf{x}, r)}{\partial q_{i}}\right)\delta q_{i} - e_{ikj}\omega_{k}\delta p_{j} + \left(\frac{\partial G_{i}(\mathbf{x}, r)}{\partial r}\right)\varepsilon_{r}$$

$$-e_{ikj}v_{k}p_{j} + g_{i} + f_{i}, \quad p_{i}(0) = p_{i0},$$

$$\dot{g}_{i} = \chi_{i}(t), \quad g_{i}(0) = g_{i0},$$

$$\delta z_{i} = \delta q_{i} + \varepsilon_{i}; \quad i = \overline{1, 2}; \quad j, k = \overline{1, 3}, \qquad (2)$$

где

$$\delta q_i = q_i - q_i, \quad \delta p_i = p_i - p_i,$$
$$g_i = G_i(\mathbf{q}) - \tilde{G}_i(\mathbf{x}, r), \quad \tilde{G}_i(\mathbf{x}, r) = -\frac{\mu q_i}{r^3}$$

— *i*-я компонента центральной составляющей напряженности GE-поля, $\chi_i(t)$ — скорость изменения g_i на траекторее движения носителя, \tilde{q}_i и \tilde{p}_i — результат интегрирования ДГУ с использованием измеренных значений ω_k ($k = \overline{1, 3}$) и F_i ($i = \overline{1, 2}$) с замещением в модели $\tilde{G}_i(\mathbf{x}, r)$ значения r значением $z_3 = \tilde{r} = r + \varepsilon_3$, v_k ($k = \overline{1, 3}$) и f_i ($i = \overline{1, 2}$) — осевые компоненты инструментальных погрешностей гироскопов и ньютонометров: $\varepsilon_1 = \varepsilon_{q_1} + r\beta_2$, $\varepsilon_2 = \varepsilon_{q_2} + r\beta_1$, $\varepsilon_3 = \varepsilon_r = \varepsilon_{q_3}$, причем $\varepsilon_{q_1}, \varepsilon_{q_2}, \varepsilon_{q_3}$ — погрешности определения координат носителя с помощью HCC, а β_1 и β_2 — угловые инструментальные погрешности астросистемы.

Задача (2) разрешима относительно вектора состояния $(\delta q_1, \delta p_1, \delta q_2, \delta p_2, g_1, g_2)^T$, но при ее решении, что очевидно, не оценивается компонента GE-поля $g_3 = G_3 - \tilde{G}_3$, поэтому она может рассматриваться только как задача коррекции 2D-ИНС, но не задача векторной гравиметрии. Это объясняется тем, что в случае 2D-схемы доступны только две модельные компоненты вектора **q** (т.е. \tilde{q}_1 и \tilde{q}_2), вследствие чего построение линейной невязки измерения, подобной той, что имела место в случае 3D-ИНС, невозможна, и, следовательно, невозможна постановка в подобном же виде (представляемом уравнениями (2) с невязкой $\delta z = \delta q_3 + \varepsilon_r$) и обратной задачи "в малом".

В качестве отправной точки дальнейших построений, доказывающих возможность постановок обратных задач "в малом" вида "состояние—измерение" с уравнениями (2), обратимся к движению объекта по сфере известного радиуса с центром в начале системы отсчета oq. При движении по сфере очевидны равенства $p_3 = 0$ и $\dot{p}_3 = 0$, которые с учетом третьего и шестого уравнений ДГУ в (1) можно представить в виде следующих условий такого движения:

$$\dot{q}_3 - \omega_2 q_1 + \omega_1 q_2 = 0, \tag{3}$$

$$\omega_2 p_1 - \omega_1 p_2 + G_3 + F_3 = 0, \qquad (4)$$

$$\ddot{q}_{3} - (\dot{\omega}_{2} + \omega_{1}\omega_{3})q_{1} - (\dot{\omega}_{1} + \omega_{2}\omega_{3})q_{2}$$
$$+ \omega_{1}p_{2} - \omega_{2}p_{1} + (\omega_{1}^{2} + \omega_{2}^{2})q_{3} = 0, \quad (5)$$

$$\ddot{q}_{3} - (\dot{\omega}_{2} + \omega_{1}\omega_{3})q_{1} - (\dot{\omega}_{1} + \omega_{2}\omega_{3})q_{2}$$
$$+ G_{3} + F_{3} + (\omega_{1}^{2} + \omega_{2}^{2})q_{3} = 0, \qquad (6)$$

$$\ddot{q}_3+(\dot{\omega}_2+\omega_1\omega_3)q_1-(\dot{\omega}_1+\omega_2\omega_3)q_2$$

$$+ 2\omega_2 p_1 - 2\omega_1 p_2 + G_3 + F_3 - (\omega_1^2 + \omega_2^2) q_3 = 0, \quad (7)$$

где (5) — результат дифференцирования (3), а (6) и (7) — соответственно сумма и разность (4) и (5), причем (7) — это формальная запись реализации на оси oq_3 принципа Д'Аламбера.

Заметим также, что при движении по сфере утверждения (3)-(7) эквивалентны утверждению $(\dot{q}_3 = 0,$ $<math>\ddot{q}_3 = 0, F_3 = -G_3 - (\omega_1^2 + \omega_2^2)r)$, а при движении по произвольной поверхности условия (3)-(6), вообще говоря, нарушаются, но условие (7) — принцип Д'Аламбера остается в силе. Иное имеет место при интегрировании ДГУ 2D-ИНС, выполняемом, как отмечалось выше, в условиях присутствия погрешностей в измерениях и оценках начальных состояний. В этом случае вне зависимости от того, движется ли объект по сфере или не по ней, нарушаются все условия (3)-(7). Такие нарушения можно интерпретировать как дополнительные невязки измерений при постановке обратных задач "в малом" (по сути задач коррекции 2D-ИНС) с уравнениями вида (2).

Из пяти условий (3)-(7) наиболее приемлемы для реализации в задачах коррекция условия (3) и (4), так как они не содержат производных угловой скорости вращения системы отсчета, что при построении невязок освобождает от нахождения оценок этих производных и что в общем случае требуется при обращении к условиям (5)-(7) (заметим, что случай обращения к (7) как наиболее характерному из этих трех условий достаточно подробно исследован в [4]). Поэтому остановимся на невязках (3) и (4). Они представляются следующим образом:

$$\delta z_a = \varepsilon_{\dot{r}} - \omega_2 \delta q_1 + \omega_1 \delta q_2, \tag{8}$$

где $\varepsilon_{\dot{r}}$ — погрешность оценивания значения \dot{r} по измеренному значению r, т. е. $z_3 = r + \varepsilon_r$;

$$\delta z_b = \omega_2 \delta p_1 - \omega_1 \delta p_2 + g_3 + f_3 + \varepsilon_{\ddot{r}}, \qquad (9)$$

где f_3 — инструментальная погрешность дополнительного (к схеме 2D-ИНС) ньютонометра при таком (только для формирования невязки) нетрадиционном (в сравнении со схемой 3D-ИНС) его использовании; $\ddot{r} = \ddot{r} + \varepsilon_{\ddot{r}}$ — оценка значения \ddot{r} , $\varepsilon_{\ddot{r}}$ — погрешность оценивания значения \ddot{r} .

С учетом (8) и (9) в рамках концепции векторной гравиметрии возможны два варианта модели обратной задачи "в малом". Первый представляется уравнениями (2), (8), (9); второй — уравнениями (2), (9). Последний, как базовый, и был исследован в вычислительном эксперименте.

Вычислительный эксперимент

Прежде всего необходимо отметить достаточно просто устанавливаемый аналитически факт калмановской наблюдаемости [5] системы "состояние—измерение" ((2), (9)) на стационарных траекториях (т.е. при движении объекта по геоцентрическими параллелям с постоянной скоростью), что указывает на преемственность этого свойства от аналогичной системы, сконструированной на базе 3D-ИНС [1], и, следовательно, на потенциальную возможность построения асимптотически устойчивого алгоритма динамического обращения [6] для решения обратной задачи, представляемой моделью ((2), (9)). С учетом этого цель численного исследования — верификация численной разрешимости задачи ((2), (9)) в условиях конечной точности вычислений и измерений.

При проведении эксперимента использованы те же, что и в работе [1], значения параметров движения и погрешностей, а именно предполагалось, что объект движется на широте $\varphi = 45^{\circ}$ в восточном направлении с относительной (к Земле) скоростью V == 100 m/s, а среднеквадратические значения компонент погрешностей ε , **f**, ν , β и $\varepsilon_{\dot{r}}$, $\varepsilon_{\ddot{r}}$ соответственно есть $\sigma_{\varepsilon} = 5m$, $\sigma_{j} = 10^{-3}$ m/s², $\sigma_{\nu} = 10^{-3}$ deg/h, $\sigma_{\beta} = 10^{-6}$ rad, $\varepsilon_{\dot{r}} = 10^{-2}$ m/s, $\varepsilon_{\ddot{r}} = 10^{-3}$ m/s².

Обусловленность задачи ((2), (9)) характеризуется сигнулярными числами обусловленности μ и μ_N соответствующих исходного и нормированного по столбцам конечномерных операторов задачи верифицировалась, как и в [1], при относительной компьютерной точности представления чисел $e_1 = 2.2 \cdot 10^{-16}$. Оценки значений чисел обусловленности — $\mu = 10^6$ и $\mu_N = 2$ — сравнивались с критическим для оператора значением $\mu^* = 10^9$. При этом гарантирующее сохранение свойства наблюдаемости условие ($\mu_N < \mu < \mu^*$) при возмущении оператора задачи вычислительной средой так же, как и в [1], выполняется.

Численное решение задачи выполнялось с применением методологии и алгоритма динамического обращения калмановского типа [4]; анализ решения показал, что его характеристики практически не отличались от тех, что имели место в случае системы на базе 3D-ИНС [1].

Заключение

В работе показано, что при построении векторной гравиметрической системы на базе 2D-ИНС возможна такая ее организация, при которой сохраняются все функциональные свойства, которые реализуются в системе на базе 3D-ИНС.

Исследование выполнено при частичной поддержке РФФИ–ДВО (грант № 11–01–98501-р_восток_а) и ДВО РАН (гранты № 12–1–0–03–005).

Список литературы

- [1] Девятисильный А.С. // ЖТФ. 2012. Т. 82. Вып. 1. С. 143– 146.
- [2] Ишлинский А.Ю. Классическая механика и силы инерции. М.: Наука, 1987. 320 с.
- [3] Андреев В.Д. Теория инерциальной навигации. Корректируемые системы. М.: Наука, 1967. 648 с.
- [4] Девятисильный А.С. // ЖТФ. 2011. Т. 81. Вып. 3. С. 103– 105.
- [5] Калман Р., Фалб П., Арбиб М. Очерки по математической теории систем. М.: Мир, 1971. 400 с. (Kalman R.E., Falb P.L., Arbib M.A. Topics in mathematical system theory. NY: McGraw-Hill, 1969).
- [6] Осипов Ю.С., Кряжимский А.В. // Вестн. РАН. 2006. Т. 76. № 7. С. 615–624.