05;11;12

Усиление комбинационного рассеяния локализованными плазмонами в наночастицах серебра на поверхности наностержней оксида цинка

© В.Е. Кайдашев,¹ Н.В. Лянгузов,^{1,2} Ю.И. Юзюк,² Е.М. Кайдашев^{1,2}

 Южный федеральный университет, НИИМиПМ, 344090 Ростов-на-Дону, Россия
 Южный федеральный университет, физический факультет, 344090 Ростов-на-Дону, Россия e-mail: kaidashev_mst@mail.ru

(Поступило в Редакцию 18 февраля 2011 г. В окончательной редакции 12 июля 2011 г.)

Исследованы особенности процесса магнетронного напыления наночастиц Ag на массивы наностержней ZnO. Боковые грани наностержней покрываются наночастицами с гораздо меньшей плотностью, нежели плоские поверхности при аналогичных временах напыления. Повышенная плотность частиц Ag наблюдается на ребрах боковых граней наностержней. Максимум плазмонного поглощения в синтезированных массивах наностержней, покрытых изолированными наночастицами Ag, лежит в диапазоне 450–500 nm. Возникновение локальных плазмонных возбуждений приводит к усилению интенсивности многофононных процессов с участием полярных мод ZnO в спектрах комбинационного рассеяния. С увеличением эквивалентной толщины пленок Ag возрастает сечение резонансного комбинационного рассеяния для обертонов фонона A₁(LO).

Введение

Исследование усиления комбинационного рассеяния (КР) вблизи несплошных металлических (Ag, Au) пленок и наночастиц на диэлектрических подложках приобрело повышенный интерес из-за возможности использования таких структур для регистрации сверхмалых концентраций химических [1] и биологических [2] веществ, изучения особенностей протекания сложных каталитических реакций [3], анализа свойств отдельных квантовых точек [4]. Из теоретических исследований [5] следует, что усиленное КР пропорционально четверной степени усредненного локального электрического поля, а вблизи перколяционного порога (перехода от островковой морфологии пленки к сплошной) среднее усиление происходит более чем на 6 порядков. Большинство исследований проводилось для гладких диэлектрических поверхностей, покрытых частицами [6,7] и несплошными пленками [8] благородных металлов. Напыление же наночастиц и несплошных пленок на развитую поверхность, такую как наностержни ZnO с гексагональной огранкой, имеет существенные отличия. Поскольку плазмонные свойства наночастиц зависят от их размера, формы и расстояния между ними [9,11], оптические свойства таких структур также отличаются. Кроме того, наностержни с нанесенными наночастицами количественно увеличивают эффект усиления из-за увеличения эффективной площади поверхности. Нанесение наночастиц на развитую поверхность наностержней Si продемонстрировано в работе [11] для анализа пестицидов, однако использованные в работе стержни имели очень высокую плотность и, по-видимому, осуществлялось покрытие только их вершин. В работе [12] исследовано химическое осаждение наночастиц Ад на наностержни ZnO из раствора. Стоит заметить, что при химическом

осаждении часто наблюдается подтравливание поверхности стержней в процессе синтеза наночастиц Аg, а также вносят дополнительные неконтролируемые загрязнения в образец продуктами реакций. Методы физического напыления, такие как магнетронное и импульсное лазерное напыление в вакууме и газах, исключают указанные недостатки химических методов и в достаточной степени позволяют управлять плотностью распределения и размерами наночастиц [6] и параметрами несплошных пленок. Они хорошо совместимы с созданием сложных гибридных структур на основе пленок, наностержней и наночастиц, в том числе в едином технологическом цикле. Массивы редко расположенных наностержней ZnO, обладая большой площадью поверхности, могут быть использованы в качестве универсальных матриц для лабораторного исследования малых концентраций газов, твердотельных, а также растворенных в жидкости нанообъектов с помощью усиления КР локализованными плазмонами. Плотностью массивов наностержней можно управлять, изменяя толщину пленочного буферного слоя, а также количество металлического катализатоpa [13].

В настоящей работе исследованы особенности процесса усиления КР локализованными плазмонами в наночастицах серебра на поверхности массивов наностержней ZnO. В качестве объекта исследования усиления мод КР выбран сам ZnO. С помощью плазмонного усиления света вблизи наночастиц наблюдались слабые полярные моды ZnO, ненаблюдаемые в таких структурах без напыления металла.

Экспериментальная часть

Наночастицы серебра напылялись на поверхность наностержней ZnO, выращенных методом карботермичеУсловия получения наночастиц Ag на поверхности наноструктур ZnO магнетронным напылением. Скорость роста составляет 1 Å/s

N₂	$P_{\rm Ar}$, Torr	U, V	I, mA	L, mm	au , s	$h_{ m equi}, m nm$
1					10	1
2	$2.5\cdot 10^{-2}$	100	35	80	20	2
3					30	3

ского синтеза на подложках a-Al₂O₃. Напыление наночастиц серебра проводилось методом магнетронного напыления на постоянном токе при комнатной температуре. Подложки с предварительно синтезированными наностержнями ZnO располагались параллельно поверхности мишени на вращаемом держателе. Скорость напыления серебра при фиксированных условиях, давлении аргона (P_{Ar}) , напряжении (U) и токе (I) разряда, а также расстоянии мишень-подложка (L) определялась по времени синтеза и толщине сплошных пленок Ад, измеренной на сколе подложки с помощью растрового электронного микроскопа FE-SEM Zeiss SUPRA 25. Для обозначения количества металла, напыленного на подложку в виде отдельных наночастиц, далее будем пользоваться термином "эквивалентная толщина" (*h*_{equi}), т. е. толщина пленки эквивалентного количества металла в предположении того, что она является сплошной. Эта величина определяется как произведение времени (τ) напыления на скорость роста. Условия напыления серебра приведены в таблице. Влияние различных режимов напыления наночастиц Ад методом магнетронного напыления на постоянном токе и методом импульсного лазерного напыления на морфологию формируемых наночастиц и несплошных пленок исследованы в работе [14]. Карботермический синтез наностержней с использованием сверхтонкой пленки меди $(h_{equi} = 1 \text{ nm})$ в качестве катализатора роста производился по методике, описанной ранее [13]. Напыление катализатора осуществлялось методом магнетронного напыления при следующих условиях: $P_{Ar} = 9 \cdot 10^{-3}$ Torr, U = 150 V, I = 35 mA, $L = 80 \,\mathrm{mm}$. Более детальное описание процесса синтеза наностержней приведено в работе [13]. Ранее установлено, что путем изменения толщины катализатора и предварительным напылением буферного пленочного подслоя ZnO различных толщин перед синтезом наностержней можно управлять плотностью распределения и размером синтезируемых наностержней [13]. Оптическая плотность образцов исследовалась с помощью спектрофотометра Backman DU 800 УФ-видимого диапазона со спектральным разрешением не хуже 1 nm. Спектры измерялись в режиме вычитания оптической плотности подложки, поэтому характеризуют поглощающие и рассеивающие свойства только массивов наностержней, покрытых наночастицами Аg. Спектры КР при возбуждении излучением Ar⁺ (514.5 nm)- и HeCd (325 nm)-лазера регистрировались с помощью рамановского спектрометра Renishaw inVia Reflex со спектральным разрешением не хуже 1 cm^{-1} . Образцы облучались в направлении, перпендикулярном к подложке, и спектры комбинационного рассеяния регистрировались в обратном направлении без анализатора, что соответствует геометриям рассеяния z(xx)z' и z(xy)z'.

Результаты и их обсуждение

Изображения сканирующей электронной микроскопии (СЭМ) полученных структур приведены на рис. 1. Средний размер наночастиц, напыленных на наностержни в данном режиме, составил 8-15 nm для $h_{equi} = 2$ nm. В работе [14] нами проведен анализ морфологии наночастиц и несплошных пленок Ag и Au, полученных в различных режимах импульсного лазерного и магнетронного напыления. Размеры наночастиц Ag на поверхности боковых граней наностержней ZnO имеют сходные размеры с наночастицами на поверхности подложек Si и пленках ZnO. Однако боковые грани наностержней покрываются наночастицами с гораздо меньшей плотностью, нежели плоские при аналогичных временах напыления. Особенно плотно серебро осаждается на

Рис. 1. СЭМ-изображение наностержней ZnO/Al_2O_3 (11–20), покрытых наночастицами Ag (эквивалентная толщина покрытия 2 nm).

Рис. 2. Спектры оптической плотности массивов наностержней ZnO, покрытых наночастицами Ag (эквивалентная толщина покрытия 1, 2 и 3 nm) (a), и аналогичных наночастиц Ag на сапфире (b).

ребрах боковых граней наностержней. На верхушках наностержней наночастицы имеют приблизительно такую же, высокую плотность распределения, как и на плоских поверхностях.

Максимум плазмонного поглощения в образцах с напылением наночастиц Ag $(h_{equi} = 1, 2 \text{ и } 3 \text{ nm})$ на массивы наностержней ZnO лежит вблизи 450-500 nm (рис. 2, a), что немного больше края оптического поглощения ZnO (366 nm). Для соответствующих эквивалентных толщин Ag на Al₂O₃ максимумы оптической плотности наблюдались в диапазоне 470-560 nm (рис. 2, b). Показатель преломления эпитаксиальной пленки ZnO на сапфире изменяется от ~ 2.4 до 2 в диапазоне 400-600 nm [15], что выше соответствующего значения для Al₂O₃ (1.75). Проводя рассуждения, аналогичные представленным в работе [16], максимум плазмонного поглощения при соответствующей эквивалентной толщине Ag на ZnO следует ожидать в более длинноволновой области, нежели в случае Al₂O₃. Однако такого смещения не наблюдалось (рис. 2, a, b), что подчеркивает факт, что сами физико-химические свойства подложки определяют механизмы роста наночастиц металла, а показатель преломления подложки влияет на положения резонанса уже сформированных частиц.

В спектрах КР образцов наностержней ZnO при возбуждении излучение Ar⁺-лазера (514 nm) наблюдалось возрастание относительной интенсивности области полярных фононов по отношению к интенсивности неполярной моды E_2^{high} (437 cm⁻¹) (рис. 3, 4). Для удобства рассмотрения интенсивность моды E_2^{high} во всех спектрах принята за единицу (рис. 4, *b*). Наибольшее усиление КР наблюдается в окрестности сильной полярной моды $A_1(\text{LO})$ (576 cm⁻¹). Усиление моды $A_1(\text{LO})$ регистрировалось ранее авторами работ [12,17].

Рис. 3. Спектр КР стержней ZnO, покрытых наночастицами Ag, при возбуждении излучением Ar⁺-лазера (длина волны 514 nm). Эквивалентная толщина слоя серебра 2 nm.

Рис. 4. Сравнительная диаграмма спектров КР стержней ZnO, покрытых наночастицами Ag. Эквивалентная толщина слоя серебра в образцах составляет 1, 2, 3 nm. Внизу приведен спектр КР стержней ZnO, свободных от наночастиц Ag. Возбуждение спектров производилось излучением Ar⁺-лазера (длина волны 514 nm).

Рис. 5. Сравнительная диаграмма спектров КР наностержней ZnO, покрытых наночастицами Ag, при возбуждении излучением HeCd лазера (325 nm) (a) и обертоны $A_1(\text{LO})$ на фоне экситонной люминесценции ZnO (b). Эквивалентная толщина слоя серебра в образцах составляет 1, 2 и 3 nm. Внизу приведен спектр КР стержней ZnO, свободных от наночастиц.

Кроме того, значительно усиливаются многофононные процессы, предположительно $2A_1(LA)$ (483 cm⁻¹), $2B_1^{low}$ (536 cm⁻¹) [18], а также $2A_1(TO)$ (974 cm⁻¹). В результате моды многофононных процессов $2A_1(LA)$, $2B_1^{low}$, а также усиленная мода $A_1(LO)$ образуют несимметричный контур с максимумом вблизи 569 cm⁻¹. Интенсивности линий, соответствующих полярным фононам, превосходят интенсивность линии E_2^{high} , в то время как для наностержней ZnO, свободных от наночастиц Ag, их интенсивности в десятки раз меньше (рис. 4). Данный эффект обусловлен поверхностным усилением КР на наночастицах серебра. По мере увеличения эквивалентной толщины слоя металла относительная интенсивность полосы с максимумом вблизи 569 cm⁻¹, включающим полярную моду $A_1(LO)$, возрастает (рис. 4).

При резонансном возбуждении на длине волны 325 nm в спектрах КР стержней ZnO с наночастицами серебра хорошо различимы до 6 обертонов продольного фонона $A_1(LO)$ (рис. 5, *a*). Без покрытия серебром в спектрах КР ZnO обычно наблюдается не более 3 обертонов. Эффект возрастания количества обертонов в ZnO ранее наблюдался при возрастании количества дефектов при увеличении температуры синтеза [19], а также при деформации решетки при встраивании атомов переходных металлов [20-22] за счет релаксации правил отбора. Однако в данном случае встраивание атомов Ад в решетку ZnO исключается из-за того, что напыление частиц происходило при комнатной температуре. Таким образом, данный эффект связан с увеличением сечения КР вблизи локализованных плазмонов на границе наночастица-диэлектрик и усилением слабых гармоник фонона $A_1(LO)$ ненапряженного ZnO. Аналогично возрастанию относительной интенсивности полярных мод при возбуждении на длине волны 514 nm при резонансном возбуждении с увеличением количества серебра при покрытии наночастицами возрастают относительные интенсивности обертонов фонона $A_1(LO)$ (рис. 5, a). Увеличение интенсивности обертонов фонона A₁(LO) при резонансном возбуждении ZnO хорошо заметно при рассмотрении интенсивностей обертонов относительно интенсивности люминесцентного экситонного пика ZnO (рис. 5, b). Для всех трех образцов стержней, покрытых наночастицами серебра, а также для образца без покрытия, максимум люминесценции наблюдался при значении 383 nm. Для одновременного наблюдения мод КР и экситонного пика ZnO энергия возбуждения (HeCd лазера) ослаблялась в 10 раз. При таких плотностях мощности нельзя ожидать увеличения интенсивности фотолюминесценции за счет плазмонных эффектов в наночастицах, наблюдавшегося ранее [23], и интенсивность экситонного пика можно считать неизменной для различного количества серебра покрывающего наностержни.

Заключение

Исследованы особенности процесса магнетронного напыления наночастиц Ag на массивы наностержней ZnO. Обнаружено, что боковые грани наностержней покрываются наночастицами с гораздо меньшей плотностью, нежели плоские при аналогичных временах напыления. Особенно плотно серебро осаждается на ребрах боковых граней наностержней. Максимум плазмонного поглощения в синтезированных массивах наностержней, покрытых изолированными наночастицами Ag, лежит в диапазоне 450–500 nm. Возникновение локальных плазмонных возбуждений приводит к усилению интенсивности многофононных процессов с участием полярных мод ZnO в спектрах КР. С увеличением эквивалентной толщины пленок серебра возрастает сечение резонансного КР для обертонов фонона $A_1(LO)$.

Работа выполнена при поддержке РФФИ, проект № 09-02-13530 "Исследование возможности применения массивов углеродных нанотрубок и полупроводниковых наностержней с высокой проводимостью в качестве антенн СВЧ- и миллиметрового диапазона" и проекта № 2.1.1.6758 "Исследование процессов роста и свойств наноструктур на основе оксида цинка" аналитической ведомственной целевой программы "Развитие научного потенциала высшей школы (2009–2010 гг.)".

Список литературы

- Kneipp K., Wang Y., Kneipp H., Perelman L.T., Itzkan I. // Phys. Rev. Lett. 1997. Vol. 78. N 9. P. 1667.
- [2] David C., Guillot N., Shen H., Toury T., Lamy de la Chapelle M. // Nanotechnology. 2010. Vol. 21. P. 475 501.
- [3] Larsson E.M., Langhammer C., Zoric I., Kasemo B. // Science. 2009. Vol. 326. P. 1091.
- [4] Hugall J.T., Baumberg J.J., Mahajan S. // Appl. Phys. Lett. 2009. Vol. 95. P. 141 111.
- [5] Brouers F., Blacher S., Lagarkov A.N., Sarychev A.K., Gadenne P., Shalaev V.M. // Phys. Rev. B. 1997. Vol. 55. N 19. P. 13 234.
- [6] D'Andrea C., Neri F., Ossi P.M., Santo N., Trusso S. // Nanotechology. 2009. Vol. 20. P. 245 606.
- [7] Gupta R., Dyer M.J., Weimer W.A. // J. Appl. Phys. 2002. Vol. 92. P. 5264.
- [8] Seal K., Nelson M.A., Ying Z.C., Genov D.A., Sarychev A.K., Shalaev V.M. // Phys. Rev. B. 2003. Vol. 67. P. 035 318.
- [9] Akimov Yu.A., Ostrikov K., Li E.P. // Plasmonics. 2009. Vol. 4. P. 107.
- [10] Schaadt D.M., Feng B., Yu E.T. // Appl. Phys. Lett. 2005. Vol. 86. P. 063 106.
- [11] Wang X.T., Shi W.S., She G.W., Mu L.X., Lee S.T. // Appl. Phys. Lett. 2010. Vol. 95. P. 053 104.
- [12] Qi H, Alexon D., Glembocki O., Prokes S.M. // Nanotechology. 2010. Vol. 21. P. 085 705.
- [13] Лянгузов Н.В., Кайдашев В.Е., Кайдашев Е.М., Абдулвахидов К.Г. // Письма в ЖТФ. 2011. Т. 37. Вып. 5. С. 1–8.
- [14] Лянгузов Н.В., Кайдашев В.Е., Широков В.Б., Кайдашев Е.М. // ЖТФ. 2012. Т. 82. Вып. 10. С. 90–95.
- [15] Sun X.W., Kwok H.S. // J. Appl. Phys. 1999. Vol. 86. N 1. P. 408.
- [16] Xu G., Tazawa M., Jin P., Nakao S. // Appl. Phys. A. 2005. Vol. 80. P. 1535.
- [17] Liu C.Y., Dvoynenko M.M., Lai M.Y., Chan T.H., Lee Y.R., Wang J.-K., Wang Y.L. // Appl. Phys. Lett. 2010. Vol. 96. P. 033 109.
- [18] Cusco R., Alarcon-Llado E., Ibanez J., Artus L. // Phys. Rev. B. 2007. Vol. 75. P. 165 202.
- [19] Лянгузов Н.В., Кайдашев В.Е., Захарченко И.Н., Юзюк Ю.И., Киселев А.П., Кайдашев Е.М. // ЖТФ. 2012. Т. 82. Вып. 4. С. 108–116.
- [20] Kaidashev V.E., Kaidashev E.M., Peres M., Monteiro T., Correia M.R., Sobolev N.A., Alves L.C., Franco N., Alves E. // J. Appl. Phys. 2009. Vol. 106. P. 093 501.
- [21] Kaidashev V.E., Misochko O.V., Correia M.R., Peres M., Monteiro T., Sobolev N.A., Kaidashev E.M. // Tech. Phys. Lett. 2009. Vol. 35. N 12. P. 1086.
- [22] Phan T.L., Vincent R., Cherns D., Nghia N.X., Ursaki V.V. // Nanotechnology. 2008. Vol. 19. P. 475 702.
- [23] Lu H., Xu X., Lu L., Gong M., Lin Y. // J. Phys. Cond. Mat. 2008. Vol. 20. P. 472 202.