05

Скачок энергии активации на силовой зависимости скорости стационарной ползучести при растяжении алюминия и свинца

© А.И. Петров, М.В. Разуваева

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: an.petrov@mail.ioffe.ru

(Поступило в Редакцию 14 ноября 2011 г.)

Проведена оценка активационных параметров на станционарной стадии процесса ползучести при растяжении алюминия и свинца в области экспоненциальной и степенной зависимости скорости стационарной ползучести от напряжения. Показано, что при $T \ge 0.5T_m$ на зависимости скорости ползучести от напряжения имеет место скачок эффективной энергии активации. Величина скачка приблизительно равна разности энергий самодиффузии и трубочной диффузии.

Известно, что механизм пластической деформации металлов и сплавов под нагрузкой существенно меняется в зависимости от температуры испытания. При температурах $(0.35-0.5)T_m$ (T_m — абсолютная температура плавления) происходит смена низкотемпературного механизма, связанного с консервативным движением дислокаций на высокотемпературный, обусловленный диффузионными процессами. В низкотемпературной области скорость стационарной ползучести $\dot{\epsilon}$ изменяется экспоненциально в зависимости от приложенного сдвигового напряжения τ [1]:

$$\dot{\varepsilon} = \dot{\varepsilon}_0 \exp\left(-\frac{H(\tau)}{kT}\right),\tag{1}$$

где $\dot{\varepsilon}_0$ — кинетическая константа, величина которой составляет $10^6 - 10^7 \, {
m s}^{-1}$ [2], K — постоянная Больцмана, $H(\tau) = H_0 - V(\tau - \tau_{\mu})$ — энергия активации, H_0 — начальная энергия активации, величина которой в дислокационных моделях близка к энергии самодиффузии [3], τ_{μ} — дальнодействующее внутреннее напряжение, создаваемое дислокациями, V — активационный объем. В высокотемпературной области скорость установившейся ползучести описывается степенным выражением [4,5]

$$\dot{\varepsilon} = \frac{A_s D^* G b}{kT} \left(\tau/G\right)^n,\tag{2}$$

где A_s — постоянная, D^* — эффективный коэффициент диффузии, n — безразмерная константа, определяющая чувствительность к напряжению, b — вектор Бюргерса, G — модуль сдвига.

В работе [6] показано, что переход от экспоненциальной к степенной зависимости скорости ползучести от напряжения в меди в интервале температур испытания $(0.4 \div 0.6)T_m$ происходит при эффективной энергии активации $H(\tau^*)$, близкой к энергии диффузии по дислокационным трубкам (τ^* — напряжение, при котором происходит указанный переход). Величина показателя степени n = 6.5 в уравнении (2) также соответствует граничной диффузии. Сделан вывод [6], что результат, полученный для меди, является следствием высокой плотности дислокаций на стационарной стадии ползучести, обусловленной низкой величиной энергии дефекта упаковки. В настоящей работе были проанализированы данные для материалов с большой величиной энергии дефекта упаковки (Al и Pb) и соответственно низкой плотностью дислокаций, полученные в области температур и напряжений, где происходит переход от экспоненциальной к степенной зависимости скорости ползучести от напряжения. Рассматривается влияние температуры и напряжения на энергию активации процесса ползучести и другие параметры, входящие в уравнения (1) и (2). Отметим, что в литературе обычно анализируются только изменения энергии активации процесса ползучести с ростом температуры испытания [7,8]; влияние напряжения на энергию активации, как правило, не рассматривается.

На рис. 1,2 по данным [9] приведены зависимости скорости стационарной ползучести от напряжения при разных температурах испытания на растяжение для об-

Рис. 1. Зависимость скорости стационарной ползучести от сдвигового напряжения для поликристаллического алюминия при различных температурах испытания: *1* — 373, *2* — 473, *3* — 573, *4* — 673 K [9].

Материалы	Т, К	T/T_m	$H_{\rm eff}(0),{\rm kJ/mol}$	τ^* , MPa	$V, kJ/(mol \cdot MPa)$	$H(\tau^*)$, kJ/mol	п	$E_a, kJ/mol$
Al Поликристалл (99.99%)	473	0.507	155	7.0	8.06	99	5	147
	573	0.617	144	4.8	7.36	108		
Al Монокристалл (99.3%)	473	0.507	172	5.72	11.6	106.2	5	142
Рb Поликристалл (99.992%)	323 291 243	0.542 0.485 0.406	103 103 127	6.8 7.5 9.1	6.9 7.05 8.4	56 50 50	6.1 5.9 13	100

Параметры уравнений (1) и (2) при испытании алюминия и свинца на растяжение в режиме ползучести

разцов моно- и поликристаллического Al. Для пересчета от нормальных к сдвиговым напряжениям использовали обычное соотношение $\tau = \sigma/m$, где фактор Тейлора m = 3.06 для поликристаллов и m = 3.67 для монокристаллов [10].

Из приведенных данных видно, что при температурах 473 К для монокристалла и 473 и 573 К для поликристаллов зависимости $\lg \dot{\varepsilon} - \tau$ состоят из двух участков. При больших напряжениях имеет место экспоненциальная зависимость $\dot{\varepsilon}$ от τ , которая описывается выражением (1). В таблице приведены величины активационных объемов V, найденные из наклона прямых $\lg \dot{\varepsilon} - \tau$, и значения эффективной энергии активации $H_{\text{eff}}(0) = H_0 + V \tau_{\mu} = kT \ln A/\dot{\varepsilon}_0$, где $\ln A$ определяется экстраполяцией скорости ползучести на величину $\tau = 0$, а величина предэкспоненциального множителя $\dot{\varepsilon}_0$, согласно [11], составляет 10^7 s^{-1} .

При напряжении, равном τ^* , зависимости lg $\dot{\varepsilon}-\tau$ претерпевают излом. Величины энергии активации процесса ползучести $H(\tau^*)$ в точке излома также приведены в

Рис. 2. Зависимость скорости стационарной ползучести от сдвигового напряжения для монокристаллов алюминия [9]. Обозначения те же, что и на рис. 1.

таблице. Как видно, значения $H(\tau^*)$ практически одинаковы для моно- и поликристаллического Al, не зависят от температуры испытания и составляют в среднем (104 ± 4) kJ/mol.

Обработка данных рис. 1 и 2 показала, что при напряжениях, меньших τ^* , зависимости скорости ползучести от напряжения могут быть описаны уравнением (2). В таблице приведены значения энергии активации Е_а и показателя степени *n* для моно- и поликристаллических образцов Al. Величина E_a определялась из наклона зависимости $\ln(\dot{\epsilon}kT) - 1/T$ при $\tau/G = \text{const}$, величина n - 1/Tиз наклона прямых $\ln(\dot{\epsilon}kT) - \ln \tau/G$. Значения E_a и nпрактически совпадают с полученными ранее [9] и свидетельствуют о том, что скорость ползучести Al при $\tau \leq \tau^*$ контролируется объемной диффузией. Приведенные в таблице данные показывают, что в точке излома зависимостей $\ln \dot{\varepsilon} - \tau$ при напряжении τ^* происходит скачок энергии активации на величину, составляющую примерно 1/4 от энергии самодиффузии. Величина скачка практически одна и та же для моно- и поликристаллического Al и она оказалась одинаковой при разных температурах испытания.

На рис. 3 приведены зависимости скорости ползучести от напряжения для поликристаллического свинца при различных температурах испытания [9]. Как и для Al, при испытании Рb наблюдаются два участка зависимости έ от τ. Результаты обработки данных рис. 3 в соответствии с выражениями (1) и (2) представлены в таблице. В точке излома зависимостей $\ln \dot{\varepsilon} - \tau$ при напряжении τ^* величина эффективной энергии активации практически не зависит от температуры испытания и составляет (110 ± 10) kJ/mol. Обработка данных, полученных при напряжениях, меньших τ^* , показала, что зависимости $\ln \dot{\varepsilon}$ от τ удовлетворяют уравнению (2) с энергией активации, равной 100 kJ/mol, что совпадает с энергией самодиффузии в свинце ($Q_{SD} = 101.4 \text{ kJ/mol} [1]$). Как видно из таблицы, коэффициент чувствительности к напряжению n одинаков при температурах 291 и 323 K и составляет 6 ± 0.1. Отметим, что при более низкой температуре испытания T = 243 К величина n = 13, что исключает возможность использования уравнения (2) для обработки данных при этой температуре.

Рис. 3. Зависимость скорости стационарной ползучести свинца от напряжения при разных температурах испытания: *1* — 242, *2* — 291, *3* — 323 К [9].

Из данных обработки, представленных в таблице, видно также, что, как и в случае Al, при испытании Pb в точке излома при напряжении τ^* происходит скачок энергии активации от 52 до 100 kJ/mol.

Рассмотрим возможные причины скачка энергии активации в процессе ползучести металлов. Известно [7], что температурная зависимость энергии активации ползучести металлов содержит несколько плато, свидетельствующих об изменении с температурой механизма деформации. Так, опыты, проведенные на А1 высокой чистоты в условиях кручения [8] или растяжения с постоянной скоростью деформации [12], показали, что при температурах свыше 0.5Т_т процесс ползучести контролируется самодиффузией ($Q_{SD} = 145 \text{ kJ/mol}$). В области температур (0.27-0.43) Т_т энергия активации также не зависит от температуры испытания и находится в пределах (105–117) kJ/mol. В промежуточной области $(0.4 \div 0.5)T_m$ энергия активации плавно возрастает до значения Q_{SD}. При указанных способах испытания Al энергия активации процесса ползучести зависит и от величины приложенного напряжения: энергия активации линейно уменьшается с ростом напряжения σ в диапазоне изменения величины σ/E 0–1 \cdot 10⁻³ (E модуль упругости) [12]. Таким образом, опыты, проведенные на Al в условиях кручения или растяжения с постоянной скоростью деформации, показали, что эффективная энергия активации при температурах свыше 0.27Т_т принимает два значения с плавным переходом от одного значения к другому. Скачка энергии активации как при исследовании температурной зависимости, так и силовой зависимости скорости стационарной ползучести для Al обнаружено не было. В то же время для других металлов был обнаружен скачок энергии активации при изучении зависимости энергии активации от температуры. В меди скачок энергии активации наблюдали при температуре $0.6T_m$, в олове при температуре $0.85T_m$ [12]. При температурах испытания выше и ниже критической температуры энергия активации была постоянной.

На основании рассмотренных данных можно сделать вывод о том, что наличие или отсутствие скачка энергии активации в Al зависит от вида испытания. При ползучести в условии кручения или растяжения с постоянной скоростью деформирования наблюдаются два плато с последующим плавным переходом между ними. При ползучести в условиях растяжения при $\sigma = \text{const}$ и температуре испытания $\geq 0.5T_m$ наблюдается скачок энергии активации от $3/4Q_{SD}$ до Q_{SD} . Величина энергии активации, равная $3/4Q_{SD}$, на низкотемпературном плато в области температур 200-400 К связывается с закреплением дислокаций неравновесными вакансиями [8] либо с диффузией вакансий по ядрам дислокаций [12,13]. Известно [14], что в чистом Аl наблюдаются эффекты старения, связанные с диффузией неравновесных вакансий к дислокациям с образованием на них ступенек и порогов, что сильно снижает подвижность дислокаций. Указанный эффект наблюдается только в диапазоне температур испытания от 200 до 400 К [8]. Следовательно, при температурах испытания $T \ge 0.5T_m$ наблюдаемая величина $E(\tau^*)$ связана с энергией активации трубочной диффузии. Таким образом, в области экспоненциальной зависимости скорости ползучести от напряжения начальная энергия активации процесса ползучести, равная энергии самодиффузии, уменьшается с увеличением приложенного напряжения только до величины, равной трубочной диффузии. При напряжении $\tau = \tau^*$ происходит скачок энергии активации до значения, равного Q_{SD} , и соответственно наблюдается переход к степенной зависимости скорости ползучести от напряжения.

Ранее [6] для меди было показано, что в условиях ползучести на растяжение максимальное значение эффективной энергии активации в области, описываемой уравнением (1), также близко к энергии трубочной диффузии. При этом в отличие от Al в Cu скачок энергии активации не наблюдается: энергия активации в области высокотемпературной ползучести оказалась равной энергии трубочной диффузии.

Рассмотрим возможную причину, объясняющую различное поведение Al и Cu. Согласно [2], величины энергии активации и коэффициентов чувствительности к напряжению *n* в уравнении (2) в области высокотемпературной ползучести определяются плотностью дислокаций на стационарной стадии ползучести. При малой плотности дислокаций ρ скорость ползучести определяется объемной самодиффузией, а величина *n* в уравнении (2) составляет около 5. При большой величине ρ энергия активации становится равной энергии трубочной диффузии, а показатель степени возрастает до величины, равной (*n* + 2). Из данных работы [15] следует, что при $T = 0.5T_m$ и $\tau^*/G = 1.4 \cdot 10^{-3}$ плотность дислокаций в Cu составляет 6 · 10¹³ m⁻². Плотность

27

дислокаций в Al при T = 473 К и $\tau^*/G = 2.5 \cdot 10^{-4}$ на порядок меньше и равна $7 \cdot 10^{12}$ m⁻². (Оценку ρ для Al проводили исходя из данных работы [10], в которой приведена экспериментальная зависимость ρ от напряжения для Al на стационарной стадии высокотемпературной ползучести при n = 5.)

Таким образом, наблюдаемый в Al скачок энергии активации может быть обусловлен низкой плотностью дислокаций на стационарной стадии высокотемпературной ползучести.

Как видно из таблицы, для свинца энергия активации при напряжении τ^* составляет 52 kJ/mol, что несколько меньше энергии зернограничной самодиффузии 65 kJ/mol [16]. Величина скачка энергии активации при переходе к высокотемпературной ползучести составляет 0.5–0.55 от энергии самодиффузии, что практически совпадает со скачком энергии, обнаруженным в меди и олове при изучении температурной зависимости энергии активации ползучести [12].

По результатам работы можно сделать следующие выводы.

1. Обнаружен скачок энергии активации на зависимости скорости стационарной ползучести от напряжения при растяжении Al и Pb при температурах испытания $T \ge 0.5T_m$. Ранее скачок энергии активации был выявлен при исследовании температурной зависимости энергии активации.

2. Величина скачка равна разности энергии активации самодиффузии и трубочной диффузии и составляет 0.25-0.55 от энергии самодиффузии.

3. Скачок энергии активации или его отсутствие определяются плотностью дислокаций на стационарной стадии высокотемпературной ползучести. Наличие скачка связано с низкой плотностью дислокаций на стационарной стадии высокотемпературной ползучести металлов.

Авторы выражают благодарность Г.А. Малыгину за обсуждение результатов и ценные замечания.

Список литературы

- [1] Фридель Ж. Дислокации. М.: Мир, 1967, 634 с.
- [2] Трефилов В.И., Моисеев В.Ф. и др. Деформационное упрочнение и разрушение поликристаллических металлов. Киев: Наукова думка, 1987. 245 с.
- [3] Малыгин Г.А. // ФММ. 1972. Т. 34. Вып. 1. С. 191–199.
- [4] Weertman J. // J. Appl. Phys. 1957. Vol. 28. P. 1185–1195.
- [5] Ashby F. // Adv. Appl. Mech. 1983. Vol. 23. P. 118-177.
- [6] Петров А.И., Разуваева М.В. // ЖТФ. 2011. Т. 81. Вып. 10. С. 36–39.
- [7] Dorn J. Contract NONR 222 (49). 1957. series 103. N 3.
- [8] Малыгин Г.А., Владимирова Г.В., Привалова Н.Н. // ФММ. 1983. Т. 55. Вып. 5. С. 1005–1015.
- [9] Myshlyaev M.M., Stepanov W.A., Shpeizman V.V. // Phys. Stat. Sol. (a). 1971. Vol. 3. P. 393–402.
- [10] Kassner M.E. // Acta Mater. 2004. Vol. 52. P. 1-9.
- [11] Петров А.И., Разуваева М.В. // ЖТФ. 2010. Т. 80. Вып. 6. С. 90–95.

- [12] Luthy H., Miller A.K., Sherby O.D. // Acta Metall. 1980. Vol. 28. P. 169–178.
- [13] Nabarro F.R.N. // Acta Metall. 1989. Vol. 37. P. 1521-1546.
- [14] Shiotani N, Kimura H, Hasiguti R.R., Maddin R. // Acta Metall. 1967. Vol. 15. P. 287–296.
- [15] Staker M.R., Holt D.L. // Acta Metall. 1977. Vol. 20. P. 569– 579.
- [16] Ститлз Л.Дж. Металлы. М.: Металлургия, 1980. 446 с.