07;11;12

Оптические свойства тонких пленок TiO₂-MnO₂, изготовленных по методу электронно-лучевого испарения

© В.В. Брус,¹ З.Д. Ковалюк,¹ П.Д. Марьянчук²

¹ Институт проблем материаловедения им. И.М. Францевича НАН Украины, Черновицкое отделение, 58001 Черновцы, Украина ² Черновицкий национальный университет им. Ю. Федьковича, 58012 Черновцы, Украина e-mail: victorbrus@mail.ru

(Поступило в Редакцию 21 апреля 2011 г.)

Определены оптические постоянные и толщина пленок TiO_2-MnO_2 (содержание MnO_2 : 0, 1, 5%), изготовленных методом электронно-лучевого испарения. Наблюдалась существенная зависимость оптических свойств тонких пленок TiO_2 от содержания марганца. Установлено, что тонкие пленки TiO_2-MnO_2 являются непрямозонными полупроводниками с шириной запрещенной зоны E_g : 3.43 eV (TiO_2), 2.89 eV (TiO_2-MnO_2 (1%)) и 2.73 eV (TiO_2-MnO_2 (5%)).

Введение

Диоксид титана (TiO₂) является одним из перспективных материалов среди прозрачных проводящих окислов [1]. Тонкие пленки TiO₂ широко используют в разных фотоэлектрических приборах благодаря их высокой прозрачности в видимой области длин волн и электрическим свойствам, которые изменяются в широких пределах в зависимости от технологических условий. Значительный интерес к исследованию электрических и оптических свойств тонких пленок чистого и легированного диоксида титана обусловленный возможностью их использования в высокоэффективных тонкопленочных солнечных элементах [2-4]. Легирование пленок TiO₂ оксидами разных металлов, в том числе и MnO₂, позволяет контролированно изменять оптические свойства и ширину запрещенной зоны тонких пленок, что актуально при конструировании фотоэлектрических приборов для эффективной работы в разных спектральных диапазонах.

Для изготовления тонких пленок TiO_2 используют ряд технологических методов, в частности, реактивное магнетронное распыление, электронно-лучевое испарение, осаждение с газовой фазы, пульверизация с последующим пиролизом, термическое окисление [5–7].

В настоящей работе исследовалось влияние примеси MnO₂ на оптические свойства тонких пленок TiO₂—MnO₂ (содержание MnO₂: 0, 1, 5%), изготовленных по методу электронно-лучевого испарения. Для определения оптических констант материала исследуемых тонких пленок использовался конвертный метод [8–11]. Конвертный метод был разработан для анализа спектров пропускания с экстремальными точками, которые обусловлены интерференционными явлениями в тонких пленках, с целью определения толщины пленок *d*, показателя преломления $n(\lambda)$, коэффициента поглощения $\alpha(\lambda)$ и экстинкции $k(\lambda)$.

Экспериментальная часть

Напыление тонких пленок $TiO_2 - MnO_2$ (содержание MnO_2 : 0, 1, 5%) проводилось на предварительно очищенные подложки стекла в универсальной вакуумной установке Laybold-Heraeus L560 с помощью электроннолучевого испарения спрессованных и отожженных таблеток из смеси порошков TiO_2 (99.99%) и MnO_2 (99.99%), взятых в соответствующих пропорциях.

Прессование таблеток (9 mm в диаметре) проводилось в специально изготовленной и предварительно очищенной пресс-форме на гидравлическом прессе при давлении 3000 kg/cm². Этого давления достаточно для формирования таблеток с необходимой механической прочностью для проведения последующих технологических операций без использования дополнительного связующего вещества. Отжиг спрессованных таблеток проводился при температуре 700°C в электрической печи СНОЛ 15/1300 с микропроцессорным регулятором температуры типа RT26-S765 на протяжении 5 h.

Мощность электронного луча, скорость напыления и толщина пленки контролировались с помощью контролера напыления тонких пленок INFICON XTC.

На протяжении процесса напыления давление остаточных газов в вакуумной камере составляло $5 \cdot 10^{-3}$ Ра. Процесс напыления продолжался 20 min при температуре подложки 100° С.

Спектры пропускания тонких пленок TiO_2-MnO_2 (содержание MnO_2 : 0, 1, 5%) получены с помощью спектрофотометра СФ-2000. Экспериментальные точки снимались в области длин волн 190–1100 nm с шагом 1 nm.

Результаты и их обсуждение

На рис. 1 изображены спектры пропускания чистой стеклянной подложки и комбинаций подложка — тонкие пленки TiO₂-MnO₂ (содержание MnO₂: 0, 1, 5%).

Рис. 1. Спектры пропускания тонких пленок на стеклянных подложках: I — чистая стеклянная подложка, 2 — подложка—TiO₂, 3 — подложка—TiO₂—MnO₂ (1%), 4 — подложка—TiO₂—MnO₂ (5%).

На рисунке видно, что в области длин волн возле края собственного поглощения тонких пленок TiO_2-MnO_2 стеклянная подложка остается полностью прозрачной. На спектрах пропускания тонких пленок видны периодические пики и впадины, которые обусловлены интерференционными явлениями, что свидетельствует о высоком структурном совершенстве тонких пленок.

Оптические свойства тонких пленок (показатель преломления $n(\lambda)$, коэффициент поглощения $\alpha(\lambda)$, коэффициент экстинкции $k(\lambda)$) и толщина d могут быть определены из спектра пропускания с интерференционными эффектами, используя конвертный метод [8–11]. Данный метод можно использовать при условии слабого поглощения тонкой пленкой и полностью прозрачной подложки, толщина которой намного больше толщины пленки. Такие условия соблюдаются в настоящей работе.

Конвертные кривые $T_{max}(\lambda)$ и $T_{min}(\lambda)$ являются основой конвертного метода. Они получатся с помощью параболичной экстраполяции экспериментально определенных точек, которые соответствуют положению интерференционных максимумов и минимумов на спектрах пропускания (рис. 2).

Получив конвертные кривые, можно определить зависимость показателя преломления $n(\lambda)$ исследуемых тонких пленок, использовав уравнение:

$$n(\lambda) = \left[\left(\frac{2n_s(T_M(\lambda) - T_m(\lambda))}{T_M(\lambda)T_m(\lambda)} + \frac{n_s^2 + 1}{2} \right) + \sqrt{\left(\frac{2n_s(T_M(\lambda) - T_m(\lambda))}{T_M(\lambda)T_m(\lambda)} + \frac{n_s^2 + 1}{2} \right)^2 - n_s^2} \right]^{1/2}, \quad (1)$$

где n_s — показатель преломления подложки, который определяется из следующего выражения:

$$n_s = \frac{1}{T_s} + \sqrt{\frac{1}{T_s^2} - 1},$$
 (2)

где T_s — пропускание подложки, которое практически постоянное в области прозрачности.

Для использованных стеклянных подложек $T_s = 0.91$ (рис. 1), поэтому из уравнения (2) получаем, что $n_s = 1.554$.

Следует отметить, что уравнение (1) можно использовать только в пределах зоны интерференции. За пределами этой области показатель преломления можно определять путем экстраполяции рассчитанных данных [9].

Как видно из рис. 3, значение показателя преломления пленок возрастает по мере увеличения содержания диоксида марганца, что хорошо согласуется с опубликованными данными [12].

Рис. 2. Спектр пропускания комбинации подложка-тонкая пленка TiO₂ вместе с конвертными кривыми.

Рис. 3. Зависимость показателя преломления материала тонких пленок: 1 — TiO₂, 2 — TiO₂—MnO₂ (1%), 3 — TiO₂—MnO₂ (5%).

Для определения толщины исследуемых пленок можно использовать уравнение:

$$d = \frac{a\lambda_1\lambda_2}{2[n(\lambda_1)\lambda_2 - n(\lambda_2)\lambda_1]},$$
(3)

где λ_1 и λ_2 — длины волн, которые соответствуют соседним экстремальным точкам на спектре пропускания, A = 1 для двух соседних экстремумов одного типа (max – max, min – min) и A = 0.5 для двух соседних экстремумов противоположного типа (max – min, min – max). Средние значения толщины пленок TiO₂–MnO₂ (содержание MnO₂: 0, 1, 5%), полученные из уравнения (3) для всех комбинаций экстремальных точек, составляют 0.385, 0.65 и 0.625 μ m, соответственно.

Коэффициент поглощения $\alpha(\lambda)$ тонких пленок TiO₂– MnO₂ может быть рассчитан с помощью уравнения (4):

$$\alpha(\lambda) = \frac{1}{2} \ln \left[\frac{(n(\lambda) - 1)(n(\lambda) - n_s) \left[\left(\frac{T_M(\lambda)}{T_m(\lambda)}\right)^{1/2} + 1 \right]}{(n(\lambda) + 1)(n(\lambda) + n_s) \left[\left(\frac{T_M(\lambda)}{T_m(\lambda)}\right)^{1/2} - 1 \right]} \right].$$
(4)

На рис. 4 изображен коэффициент поглощения α материала пленок TiO₂-MnO₂ (содержание MnO₂: 0, 1, 5%) в зависимости от длины волны. Наблюдается резкий рост коэффициентов поглощения в коротковолновой области возле краев собственного поглощения пленок TiO₂-MnO₂. Следует отметить, что в длинноволновой области ($\lambda > 900$ nm) наблюдается уменьшение коэффициента поглощения с ростом содержания диоксида марганца.

Коэффициент экстинкции можно легко определить, используя уравнения $k(\lambda) = \lambda \alpha(\lambda)/4\pi$ (рис. 5). Как видно из рис. 5, коэффициенты экстинкции тоже резко растут вблизи краев собственного поглощения исследуемых пленок. Следует отметить, что коэффициент экстинкции пленки чистого TiO₂ в области прозрачности линейно увеличивается с ростом длины волны излучения, в отличие от поведения коэффициентов экстинкции тонких пленок TiO₂–MnO₂.

Рис. 4. Зависимость коэффициентов поглощения α от длины волны для тонких пленок: $1 - \text{TiO}_2$, $2 - \text{TiO}_2 - \text{MnO}_2$ (1%), $3 - \text{TiO}_2 - \text{MnO}_2$ (5%).

Рис. 5. Зависимость коэффициентов экстрикции k от длины волны для тонких пленок: $1 - \text{TiO}_2$, $2 - \text{TiO}_2 - \text{MnO}_2$ (1%), $3 - \text{TiO}_2 - \text{MnO}_2$ (5%).

Рис. 6. График зависимости $(\alpha h v)^{1/2} = f(h v)$ для тонких пленок: $I - \text{TiO}_2$, $2 - \text{TiO}_2 - \text{MnO}_2$ (1%), $3 - \text{TiO}_2 - \text{MnO}_2$ (5%).

Конвертный метод можно использовать только в пределах области прозрачности тонкой пленки. В области длин волн возле края собственного поглощения пленок $\text{TiO}_2-\text{MnO}_2$ справедливы следующие условия: сильные поглощения в материале пленок, полностью прозрачная подложка и $(n^2 \gg k^2)^1$. Исходя из вышесказанного, можно сделать вывод, что коэффициент поглощения $\alpha(\lambda)$ (в области сильного поглощения материалом тонких пленок $\text{TiO}_2-\text{MnO}_2$) можно определить из следующего уравнения [14]:

$$\alpha(\lambda) = \frac{1}{d} \ln\left[\frac{(1 - R_1(\lambda))(1 - R_2(\lambda))(1 - R_{12}(\lambda))}{T(\lambda)}\right], \quad (5)$$

где *Т* — коэффициент пропускания, *R*₁, *R*₁₂, *R*₂ — коэффициенты отражения от границ: воздух-пленка:

¹ Диоксид титана обладает самым большим значением показателя преломления среди всех прозрачных проводящих оксидов, а также TiO_2 является непрямозонным полупроводником с малым значением коэффициента экстрикции [13]. Поэтому неравенство $n^2 \gg k^2$ выполняется даже в области собственного поглощения.

 $R_1 = (\frac{n(\lambda)-1}{n(\lambda)+1})^2$, пленка-подложка: $R_{12} = (\frac{n_s - n(\lambda)}{n_s + n(\lambda)})^2$, подложка-воздух $R_2 = (\frac{1-n_s}{1+n_s})^2$.

Коэффициенты поглощения тонких пленок TiO_2 – MnO_2 (содержание MnO_2 : 0, 1, 5%) в области края собственного поглощения хорошо описываются выражением:

$$\alpha h \nu \propto B (h \nu - E_g)^2, \tag{6}$$

где B — константа, hv — энергия кванта света, E_g — ширина запрещенной зоны. Такая зависимость свидетельствует о том, что материалы исследуемых пленок являются непрямозонными полупроводниками [14].

Экстраполяцией линейных участков соответствующих кривых зависимостей $(\alpha h\nu)^{1/2} = f(h\nu)$ до пересечения с осью энергий $h\nu$ определены значения ширины запрещенной зоны тонких пленок: $E_g = 3.43 \text{ eV}$ для чистого TiO₂, $E_g = 2.89 \text{ eV}$ для TiO₂-MnO₂ (1%) и $E_g = 2.73 \text{ eV}$ для TiO₂-MnO₂ (5%) (рис. 6).

Заключение

Получены тонкие пленки TiO₂-MnO₂ (содержание MnO₂: 0, 1, 5%) на стеклянных подложках методом электронно-лучевого испарения.

Определены оптические константы тонких пленок TiO_2 —MnO₂ (показателя преломления $n(\lambda)$, коэффициенты поглощения $\alpha(\lambda)$ и экстинкции $k(\lambda)$) в зависимости от длины волны с помощью конвертного метода. Наблюдается увеличение показателя преломления тонких пленок TiO_2 —MnO₂ во всем исследуемом диапазоне длин волн при росте содержания MnO₂. Коэффициенты поглощения и экстинкции исследуемых пленок резко увеличиваются в области края собственного поглощения, а в длинноволновой области наблюдается уменьшение значений соответствующих коэффициентов пропорционально содержанию диоксида марганца.

Установлено, уменьшение ширины запрещенной зоны материала исследуемых пленок при росте содержания диоксида марганца.

Список литературы

- [1] Diebold U. // Surf. Sci. Rep. 2003. Vol. 48. P. 53-229.
- [2] Singh R.S., Rangari V.K., Sanagapalli S., Jayaraman V., Mahendra S., Singh V.P. // Sol. Energ. Mat. Sol. C. 2004. Vol. 82. P. 315–330.
- [3] Ernst K., Belaidi A., Konenkamp R. // Semicond. Sci. Technol. 2003. Vol. 18. P. 475–479.
- [4] Barrera M., Pla J., Bocchi C., Migliori A. // Sol. Energ. Mat. Sol. C. 2008. Vol. 92. P. 1115–1122.
- [5] *Брус В.В.* // Восточно-европейский журнал передовых технологий. 2010. Т. 47. Вып. 5. С. 13–16.
- [6] Eiamchai P., Chindaudom P., Pokaipisit A., Limsuwan P. // Curr. Appl. Phys. 2009. Vol. 8. P. 707–712.
- [7] Chong L.H., Mallik K., Groot C.H., Kersting R. // J. Phys.: Condens. Matter. 2006. Vol. 18. P. 645–657.
- [8] Swanepoel R. // J. Phys. E: Sci. Instrum. 1983. Vol. 16. P. 1214–1221.
- 8 Журнал технической физики, 2012, том 82, вып. 8

- [9] Sanchez-Gonzalez J., Diaz-Parralejo A., Ortiz A.L., Guiberteau F. // Appl. Surf. Sci. 2006. Vol. 252. P. 6013–6017.
- [10] Ilican S., Gaglar M., Gaglar Y. // Mater. Sci. Poland. 2007. Vol. 25. P. 709–717.
- [11] Gumus C., Ozkendir O.M., Kavak H., Ufuktepe Y. // J. Optoelectron. Anv. Mater. 2006. Vol. 8. P. 299–303.
- [12] Ivanova T., Harizanove A. // Sol. Stat. Ionics. 2001. Vol. 138.
 P. 227–232.
- [13] Karunagaran B., Rajendra Kumar R.T., Viswanathan C., Mangalaraj D., Narayandass Sa.K., Mohan Rao G. // Crystal. Res. Technol. 2003. Vol. 38. P. 773–778.
- [14] *Уханов Ю.И.* Оптические свойства полупроводников. М.: Наука, 1977. 366 с.