01;06

О влиянии формы включений на пороги протекания двумерных моделей композитов

© Б.Я. Балагуров

Институт биохимической физики им. Н.М. Эмануэля РАН, 119334 Москва, Россия e-mail: balagurov@deom.chph.ras.ru, byabalagurov@mail.ru

(Поступило в Редакцию 8 ноября 2011 г.)

На примере двумерных моделей рассмотрено влияние формы включений на проводимость композитов, в том числе на критическую концентрацию (порог протекания) N_c . Установлена связь константы N_I , характеризующей эффективную проводимость σ_e при малых концентрациях N включений, с порогом протекания N_c .

Введение

Одной из важнейших характеристик бинарных композитов является порог протекания [1,2] — критическая концентрация, при которой происходит фазовый переход металл-диэлектрик и эффективная проводимость σ_e обращается в нуль. В качестве порога протекания выбирается, как правило, критическая концентрация рс проводящей компоненты — доля занимаемого ею объема или площади в двумерном (D = 2) случае. Однако применение безразмерной концентрации р как аргумента функции $\sigma_e(p)$ не всегда удобно. Так, при используемом в теории проводимости композитов макроскопическом подходе непроницаемые царапины (или, например, трещины при D = 3) считаются бесконечно тонкими, имеющими нулевую площадь (объем). В то же время такие "бестелесные" включения существенно влияют на проводимость композита, при достаточном их количестве обращая величину σ_e в нуль. Поэтому более универсальным аргументом эффективной проводимости σ_e является размерная концентрация N — число включений на единицу объема (площади при D = 2). Ниже ограничимся рассмотрением двумерных моделей композитов со случайно распределенными и хаотически ориентированными диэлектрическими включениями.

В стандартной теории протекания [1,2] основное внимание уделяется случайно-неоднородным бинарным системам. В таких неупорядоченных композитах встречаются включения разнообразных размеров и форм, что не позволяет выяснить вклад конкретного включения в эффективную проводимость σ_e . В то же время для систем с одинаковыми включениями величина σ_e явным образом зависит от их формы уже при малой концентрации N. Естественно, что размер и форма включений влияют и на порог протекания N_c (для "объемных" фигур и на p_c). Поэтому изучение зависимости эффективной проводимость композитов от геометрических характеристик включений представляет как теоретический, так и практический интересы.

Эффективная проводимость σ_e двумерных моделей композитов с включениями различных фиксированных

форм и размеров исследовалась в ряде работ, из которых отметим следующие. В работе [3] компьютерными методами изучалось влияние на порог протекания диэлектрических включений нескольких форм: в виде круга, квадрата и отрезка прямой (царапины). В [4] теми же методами вычислялась проводимость двумерных изотропных и структурно анизотропных моделей с системой царапин. В [5] для модели с эллиптическими включениями выяснена зависимость порога протекания от отношения полуосей эллипса. Наиболее, по-видимому, подробное изучение обсуждаемой проблемы проведено в работе [6], где численными методами рассмотрена проводимость одиннадцати моделей с различными типами включений. При этом в [6] исследована как область малых концентраций включений N, так и определены соответствующие пороги протекания. Наконец, в работах [7,8] проводились модельные эксперименты, в которых определялась проводимость реальных пленок с системой пробитых отверстий разных форм.

В предыдущей работе [9] проводимость двумерных моделей с включениями различных форм рассмотрена аналитическими методами. В линейном по концентрации N приближении для этих моделей определены точные значения величин N_I, характеризующих начальный участок зависимости σ_e от N. Полученные для N_I результаты удовлетворительным образом согласуются с данными компьютерного эксперимента [6]. В настоящей работе основное внимание уделено влиянию формы включений на порог протекания N_c. Использованное в работе обобщение приближения эффективной среды [1] привело к равенству $N_c = 2N_I$ для "бестелесных" фигур типа царапин. Анализ результатов компьютерных экспериментов показал, что близкое к этому соотношение $N_c \simeq 2.3 N_I$ приближенно выполняется не только для "бестелесных", но и (несколько хуже) для "объемных" включений круга, квадрата и др. Это приближенное соотношение позволило в случае включений эллиптической формы с удовлетворительным согласием с данными из [5] найти аналитическую зависимость порога протекания N_c от отношения полуосей эллипса b/a практически во всем интервале его изменения — от круга до царапины.

1. Линейное по концентрации приближение

В случае малой концентрации включений N при вычислении эффективной проводимости композита σ_e можно ограничиться линейной по N поправкой. Для этой поправки имеется точное выражение через дипольную поляризуемость включения (см., например, [9,10]).

Пусть рассматриваемое включение помещено во внешнее однородное электрическое поле напряженности \mathbf{E}_0 . Потенциал $\varphi(\mathbf{r})$ вдали от включения в двумерном случае имеет следующую асимптотику:

$$r \to \infty$$
: $\varphi(\mathbf{r}) = -\mathbf{E}_0 \mathbf{r} + 2 \frac{\mathbf{pr}}{r^2} + \cdots,$ (1)

$$\mathbf{p} = \hat{\mathbf{\Lambda}} \mathbf{E}_0, \quad \hat{\mathbf{\Lambda}} = s \hat{\alpha}. \tag{2}$$

Здесь **р** — дипольный момент включения, $\hat{\Lambda}$ — его тензорная поляризуемость, имеющая размерность площади, $\hat{\alpha}$ — соответствующий безразмерный тензор поляризуемости, *s* — площадь включения. В общем случае тензор поляризуемости симметричен

$$\hat{\Lambda} = \begin{pmatrix} \Lambda_{xx} & \Lambda_{xy} \\ \Lambda_{xy} & \Lambda_{yy} \end{pmatrix}, \qquad (3)$$

зависит от геометрии включения и отношения его проводимости σ_2 к проводимости матрицы σ_1 : $h = \sigma_2/\sigma_1$. Величины Λ_{xx} , Λ_{yy} и Λ_{xy} для диэлектрических ($\sigma_2 = 0$) включений зависят только от их геометрических характеристик.

Согласно [9], для двумерной системы со случайно расположенными и ориентированными включениями безразмерная эффективная проводимость $f = \sigma_e/\sigma_1$ в линейном по концентрации приближении имеет вид

$$f = 1 + 2\pi c \operatorname{Sp} \hat{\alpha} \tag{4}$$

или

$$f = 1 + 2\pi N \operatorname{Sp} \tilde{\Lambda}.$$
 (5)

В (4), (5) Sp — шпур (след), сумма диагональных элементов соответствующего тензора. Для диэлектрических (*d*) включений имеем Sp $\hat{\Lambda}_d < 0$, так что в этом случае выражение (5) может быть записано в виде

$$f_d = 1 - \frac{N}{N_I} \quad (N \ll N_I).$$
 (6)

Здесь

$$N_I = \frac{1}{2\pi |\mathrm{Sp}\,\hat{\Lambda}_d|}\tag{7}$$

— величина той же размерности, что и N, определяющая начальный участок зависимости f_d от концентрации N. Для ряда фигур (см. рис. 1) константа N_I , зависящая только от геометрии включения, вычислялась в работе [6] компьютерными методами.

Заметим, что в двумерном случае для одинаковых диэлектрческих и идеально проводящих (*s*) включений

Рис. 1. Формы включений, рассмотренных в работе [6].

Sp $\Lambda_s = -$ Sp $\Lambda_d > 0$ [9]. Поэтому линейная по концентрации поправка в эффективной проводимости σ_{es} положительна. Соответствующая безразмерная эффективная проводимость $f_s = \sigma_{es}/\sigma_1$ может быть представлена в виде $f_s = 1 + N/N_I$ с той же, что и в (6), (7), величиной N_I . По этой причине в дальнейшем ограничимся рассмотрением композитов с непроводящими включениями. Отметим также, что в двумерном случае для определения тензора поляризуемости Λ_d таких включений могут быть использованы методы теории функций комплексных переменных [11]. В предыдущей работе [9] с помощью конформных отображений дано точное аналитическое решение этой задачи для всех фигур, изображенных на рис. 1, кроме 5 и 7. Приведем соответствующие результаты для некоторых из них.

Для царапины длины 2а:

$$N_I = \frac{A_-}{\pi a^2}, \quad A_- = 2,$$
 (8)

для круга радиуса R:

$$N_I = \frac{A_{\bigcirc}}{\pi R^2}, \quad A_{\bigcirc} = 1/2, \tag{9}$$

для квадрата со стороной 2а:

$$N_I = \frac{A_{\Box}}{4a^2}, \quad A_{\Box} = \frac{\pi}{2[K(1/\sqrt{2})]^2} \simeq 0.4569.$$
 (10)

Здесь $K(1/\sqrt{2}) = 1.85407...$ — полный эллиптический интеграл первого рода K(k) с модулем $k = 1/\sqrt{2}$. Ниже

понадобится также величина N_I для непроницаемого эллипса с полуосями *a* и *b*:

$$N_I = \frac{A_{ell}(\gamma)}{\pi a b}, \quad A_{ell}(\gamma) = \frac{2\gamma}{(1+\gamma)^2}, \quad \gamma = \frac{b}{a}.$$
 (11)

При $\gamma = 1$ (круг) из (11) следует выражение (9) при a = R, а в пределе $\gamma \to 0$ (царапина) — формула (8).

Из (8)–(11) и других выражений для N_I из [9] следует, что величина N_I заключена (при одинаковых размерных множителях) в диапазоне значений $0.1142/a^2 \leq N_I \leq 0.6366/a^2$. Здесь наибольшая оценка N_I относится к царапине длины 2a, а наименьшая — к квадрату со стороной 2a, причем их отношение $\simeq 5.57$. Этот интервал оказывается еще меньше, если ограничиться включениями с одинаковыми максимальными линейными размерами, что представляется более корректным способом сравнения. Поэтому рассмотрим фигуры, вписанные в круг радиуса R. Для квадрата, например, в этом случае величину a в (10) следует заменить на $R/\sqrt{2}$, так что $N_I \simeq 0.2284/R^2$.

При таком подходе наибольший вклад в сопротивление образца вносят непроницаемые круговые включения, для которых константа N_I имеет наименьшее значение (см. (9)). Максимальное же значение величина N_I по-прежнему имеет для царапины длины в данном случае 2R. Поэтому при таком сравнении константа N_I оказывается заключенной в пределах

$$\frac{1}{2\pi R^2} \le N_I \le \frac{2}{\pi R^2},\tag{12}$$

так, что $N_I^{\text{max}}/N_I^{\text{min}} = 4$. При этом для включения любой формы, вписанного в круг радиуса *R*, величина N_I находится в диапазоне (12). Как показано в Приложении, для "объемных" фигур с площадью $s > \pi R^2/4$ этот диапазон еще меньше — см. (П10).

Таким образом, для включений различных форм константа N_I имеет один и тот же порядок величины $\sim 1/a^2$, где a — максимальный линейный размер включения. С другой стороны, диэлектрические включения могут образовать бесконечный кластер [2], если величина a сравнима со средним расстоянием между центрами включений $\bar{l} \sim N^{-1/2}$. Из этого условия следует порядковая оценка для порога протекания $N_c \sim 1/a^2$, также одинаковая для включений различных форм. Это означает, по-видимому, что порог протекания N_c и величина N_I также имеют один и тот же порядок величины.

2. Приближение эффективной среды

Для описания проводимости композитов при немалых концентрациях воспользуемся приближенным методом — так называемой теорией эффективной среды [1], обобщенной на случай включений произвольной формы [12]. Для двумерной изотропной двухкомпонентной системы основное уравнение приближения эффективной среды имеет вид (ср. с [12])

$$p \frac{\sigma_e - \sigma_1}{\sigma_e + \sigma_1} - \pi N \operatorname{Sp} \hat{\Lambda} = 0.$$
(13)

Здесь p — доля площади, занятой первой компонентой (матрицей), N — размерная концентрация включений, Λ — их тензор поляризуемости, определенный аналогично (1)–(3). Отличие от (1)–(3) состоит в том, что в этом случае внешняя по отношению к включению среда ("эффективная среда") обладает эффективной проводимостью σ_e .

Для включения круговой формы радиуса R и проводимости σ_2 величина $\hat{\Lambda}$ сводится к скаляру $\hat{\Lambda} = \Lambda \hat{1}$, где $\hat{1}$ — единичный тензор и в данном случае

$$\Lambda = -\frac{R^2}{2} \frac{\sigma_e - \sigma_2}{\sigma_e + \sigma_2}.$$
(14)

Подстановка (14) в (13) приводит к стандартному для теории эффективной среды уравнению [1], из которого для σ_e следует обычное выражение (ср. с [1] при z = 4).

$$\sigma_e = (p - 1/2)(\sigma_1 - \sigma_2) + [(p - 1/2)^2(\sigma_1 - \sigma_2)^2 + \sigma_1\sigma_2]^{1/2}.$$
 (15)

Отметим, что в этом приближении не делается различия между "жесткими" и перекрывающимися включениями.

Уравнение (13) может быть разрешено и для включений произвольной формы, если их проводимость σ_2 равна нулю. В этом случае, как отмечалось выше, тензор $\hat{\Lambda}_d$ зависит только от геометрии включения, так что из (13) для безразмерной эффективной проводимости $f_d = \sigma_{ed}/\sigma_1$ находим

$$f_d = \frac{p - \pi N |\operatorname{Sp} \Lambda_d|}{p + \pi N |\operatorname{Sp} \hat{\Lambda}_d|}.$$
(16)

Так как в этом приближении p = 1 - sN, где s — площадь включения, то выражение (16) может быть представлено в виде

$$f_d = \frac{1 - N/N_c^{\text{EMA}}}{1 + N(1 - 2sN_c^{\text{EMA}})/N_c^{\text{EMA}}},$$
(17)

где

$$N_c^{\rm EMA} = \frac{2N_I}{1 + 2sN_I} \tag{18}$$

— критическая концентрация (порог протекания) в приближении эффективной среды (Effective Medium Approximation). В (18) N_I — величина, определенная в (6), (7).

В качестве примера применения формул (17), (18) рассмотрим систему с включениями в виде непроводящих эллипсов, для которых величина N_I дается выражением (11). На рис. 2 сплошной линией изображена вычисленная по этим формулам зависимость проводимости f_d от числа включений \mathcal{N} при s = 0.0075 сm² и $\gamma = 41$.

 $\begin{array}{c} 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ x \end{array}$

Рис. 2. Безразмерная эффективная проводимость f_d двумерной системы с включениями эллиптической формы как функция числа включений \mathcal{N} ($x = \mathcal{N} \cdot 10^{-3}$). Квадраты данные модельного эксперимента [8]; сплошная линия приближение эффективной среды, формула (17).

Квадратами на рисунке представлены соответствующие данные модельного эксперимента [8]. Сравнение аналитического и модельного результатов показывает, что приближение эффективной среды удовлетворительно описывает проводимость этой модели в достаточно широком интервале изменения концентрации. В то же время, как и всякая теория типа среднего поля, это приближение не годится в окрестности порога протекания. При этом предсказываемая величина критической концентрации N_c (и соответственно порога p_c) справедлива, вообще говоря, только по порядку величины.

3. Порог протекания

Прежде чем обсуждать результаты компьютерных и модельных экспериментов [3-8], заметим, что для "бестелесных" (при s = 0) фигур из (18) следует

$$N_c^{\rm EMA} = 2N_I. \tag{19}$$

В частности, для царапин длины 2*a* из (8) с учетом (19) получаем

$$N_c^{\text{EMA}} = \frac{B_-^{\text{EMA}}}{\pi a^2}, \quad B_-^{\text{EMA}} = 4.$$
 (20)

Результаты различных компьютерных экспериментов описываются формулой типа (20) при $B_{-} \simeq 4.2-4.6$. Таким образом, предсказываемое приближением эффективной среды значение константы $B_{-}^{\text{EMA}} = 4$ в этом случае довольно близко́ к наблюдаемому на опыте. На этом примере подтверждается также высказанное в разд. 1 предположение о том, что величины N_I и N_c имеют одинаковый порядок величины.

Приближенное выполнение соотношения (19) для царапин наводит на мысль о его проверке для других фигур, в том числе "объемных" типа круга и квадрата. Как уже отмечалось во Введении, в работе [6] компьютерными методами изучалась проводимость двумерных моделей с включениями одиннадцати различных форм. При этом были вычислены константы N_I и N_c для всех этих фигур. С использованием данных из работы [6] на рис. З представлено отношение N_c/N_I для всех одиннадцати типов включений. Довольно неожиданно оказалось, что в среднем

$$\frac{N_c}{N_I} \simeq 2.3,\tag{21}$$

причем отклонения от значения (21) невелики. Несколько выпадают из этого ряда фигуры 3 и 4, однако по поводу данных для этих включений в [6] высказаны некоторые сомнения.

В работе [5] компьютерными методами достаточно подробно исследован порог протекания для двумерной модели с хаотически расположенными и ориентированными непроводящими включениями эллиптической формы. С использованием данных для N_c из [5] и значений для N_I из формулы (11) на рис. 4 представлена

Рис. 3. Отношение N_c/N_l для моделей с одиннадцатью типами фигур, рассмотренных в работе [6].

Рис. 4. Отношение N_c/N_I для модели с включениями эллиптической формы как функция $\gamma = b/a$ (в логарифмическом масштабе).

Журнал технической физики, 2012, том 82, вып. 8

1

зависимость величины N_c/N_I от отношения полуосей эллипса. Здесь также наблюдается примерное постоянство величины N_c/N_I , причем отклонения от среднего значения тем меньше, чем ближе эта фигура к царапине.

Таким образом, из (8)–(10) с учетом (21) получаем следующие оценки для порогов протекания: для царапин длины 2*a*:

$$N_c = \frac{B_-}{\pi a^2}, \quad B_- \simeq 4.6,$$
 (22)

для кругов радиуса R:

$$N_c = \frac{B_{\bigcirc}}{\pi R^2}, \quad B_{\bigcirc} \simeq 1.15, \tag{23}$$

для квадратов с длиной стороны 2а:

$$N_c = \frac{B_{\square}}{4a^2}, \quad B_{\square} \simeq 1.05.$$

Анализ результатов компьютерных и модельных экспериментов [3–8] дает сходные с (22)–(24) зависимости. Необходимо отметить в то же время, что в данных для порогов протекания [3–8] имеется значительный разброс, так что приведенные в (22)–(24) значения констант *В* являются ориентировочными и требуют дальнейшего уточнения.

Практическое постоянство отношения N_c/N_I для системы с включениями в виде эллипсов (см. рис. 4) позволяет дать приближенное аналитическое выражение для порога протекания этой модели $N_c(\gamma)$ как функции дополнительного параметра — отношения полуосей $\gamma = b/a$. В согласии с рис. 4 имеем $N_c \simeq 2.2N_I$, так что из (11) получаем

$$N_c = \frac{B_{ell}(\gamma)}{\pi ab}, \quad B_{ell}(\gamma) \simeq \frac{4.4\gamma}{(1+\gamma)^2}, \quad \gamma = \frac{b}{a}.$$
 (25)

В работе [5] данные для $N_c(\gamma)$ приведены для модели с фиксированной площадью эллипса $s = \pi a b = \pi/8$. При этом условии (25) принимает вид

$$N_c \simeq 11.2 \frac{\gamma}{(1+\gamma)^2}.$$
 (26)

На рис. 5 сплошной линией изображена вычисленная по этой формуле зависимость порога протекания N_c от параметра γ (в логарифмическом масштабе). Квадратами на этом рисунке представлены соответствующие данные компьютерного эксперимента [5]. Отметим, что условие постоянства площади включения приводит к тому, что при $\gamma \rightarrow 0$ ($b \rightarrow 0$) большая полуось эллипса *а* неограниченно растет. Поэтому в этом пределе порог протекания стремится к нулю.

Связь размерной концентрации N с безразмерной c (долей занимаемой площади) зависит от степени "жесткости" включений. Для абсолютно "жестких" (без взаимопересечений) фигур эта связь линейна: c = sN, где s — площадь включения. Если же возможно пересечение (частичное наложение включений друг на друга,

Рис. 5. Порог протекания N_c для модели с включениями эллиптической формы как функция отношения полуосей γ (в логарифмическом масштабе) при фиксированной площади эллипса $s = \pi ab = \pi/8$. Сплошная линия — зависимость, вычисленная по формуле (26); квадраты — данные компьютерного эксперимента [5].

как например при пробивании дырок в проводящей пленке), то соотношение между c и N имеет более сложный характер. Так, для случайного (пуассоновско-го) распределения центров включений это соотношение имеет вид (см., например, [5])

$$c = 1 - e^{-sN}.$$
 (27)

При этом линейная зависимость c = sN справедлива только в пределе малых концентраций $sN \ll 1$ ($c \ll 1$).

Безразмерная концентрация проводящей компоненты p находится из обычного соотношения p = 1 - c, где c определено в (27). Поэтому при пуассоновском распределении безразмерный порог протекания p_c связан с размерным N_c следующим образом:

$$p_c = e^{-sN_c}. (28)$$

Записав порог N_c для "объемных" фигур в виде

$$N_c = \frac{B}{s},\tag{29}$$

найдем соотношение между p_c и константой B

$$p_c = e^{-B}. (30)$$

Для кругов с константой *B* из (23) соотношение (30) дает $p_c \simeq 0.32$, в то время как, согласно данным компьютерного эксперимента, $p_c = 0.33 \pm 0.02$ [6]. Для включений в виде квадратов из (24) и (30) находим $p_c \simeq 0.35$; согласно же [6], $p_c = 0.35 \pm 0.02$.

Заметим, что в рамках приближения эффективной среды проводимость f_d обращается при $p \rightarrow p_c + 0$ (или $N \rightarrow N_c - 0$) в нуль линейным образом: $f_d \sim (p - p_c)$ или соответственно $f_d \sim (N_e - N)$ — см. (16), (17). Однако в

действительности эта зависимость нелинейна и в теории протекания описывается степенной функцией [2]

$$f_d \sim (p - p_c)^t \tag{31}$$

с критическим индексом t (в двумерном случае $t \simeq 1.3$). Зависимостью вида (31) описывается обычно эффективная проводимость случайно-неоднородных сред, в которых имеются включения самых разнообразных форм и размеров. Можно думать, однако, что аналогичная зависимость

$$f_d \sim (N_c - N)^t \tag{32}$$

справедлива и для моделей с фиксированной формой включений. При этом критический индекс имеет, повидимому, одно и то же значение $t \simeq 1.3$ для самых различных фигур — от круга до царапины. Это предположение основывается на том, что при случайном распределении включений значение индекса t определяется топологией бесконечного кластера [2], для которого конкретная микроструктура композита (в данном случае — форма включений) несущественна.

Всюду выше обсуждались модели с диэлектрическими (d) включениями. Рассматривать модели с идеально проводящими (s) включениями той же формы фактически нет необходимости из-за присущей двумерным системам специфической симметрии [13]. Дело в том, что безразмерные эффективные проводимости f_d (при $\sigma_2 = 0$) и f_s (при $\sigma_2 = \infty$) таких систем связаны так называемым соотношением взаимности [13] (см. также [14])

$$f_s = \frac{1}{f_d}.$$
(33)

Использование соотношения (33) позволяет переносить все результаты, полученные для моделей с диэлектрическими включениями, на модели с идеально проводящими включениями той же формы.

Заключение

Проведенный в работе анализ обсуждаемой проблемы показал, что в двумерном случае величины N_I и N_c связаны приближенным соотношением $N_c/N_I \simeq 2.2-2.3$. Наличие такой связи позволяет давать оценку размерного порога протекания N_c для системы с включениями заданной формы по соответствующей константе N_I . В свою очередь, величина N_I , характеризующая начальный участок зависимости эффективной проводимости σ_e от концентрации N, выражается через тензор поляризуемости включения $\hat{\Lambda}$. Для непроводящих включений в ряде случаев тензор $\hat{\Lambda}$ может быть определн аналитически с помощью методов теории функций комплексных переменных (см. [9,10]).

Заметим, что аналитическими методами в отличие от компьютерного подхода [6] величина N_I определяется во всем диапазоне изменения входящих в задачу параметров. Так, например, при рассмотрении правильной двумерной звезды в работе [10] определена поляризуемость

такого включения (и, следовательно, константа N_I) при произвольном числе лучей и при любом угле в вершине луча. Аналогичным образом в [9] поляризуемость включения прямоугольной формы вычислена во всем интервале изменения отношения длин его сторон от квадрата до царапины. Это замечание относится и к включениям других форм, рассмотренных в [9]. Тем самым расширяется и круг включений, для которых возможна приближенная оценка порога протекания N_c .

Отметим, наконец, что при корректном способе сравнения включений различных форм величина N_I заключена в сравнительно небольшом диапазоне значений — см. (12), а также формулу (П10). При этом $N_I^{\max}/N_I^{\min} \leq 4$. Следовательно, в аналогичном довольно узком интервале (в отличие от критической концентрации p_c) меняется и порог протекания N_c . Отмеченные обстоятельства значительно облегчают определение порога протекания для двумерных моделей композитов с включениями фиксированной формы.

Приложение

В двумерном случае для величины N_I может быть установлено полезное неравенство общего характера.

Рассмотрим непроницаемое включение произвольной формы в комплексной плоскости z. Пусть функция w = w(z) конформно отображает внешность этой фигуры на внешность круга единичного радиуса. Асимптотическое (при $z \to \infty$) разложение для w(z) в общем случае будет иметь вид

$$w(z) \simeq \frac{z}{C} + \frac{D}{z} + \cdots$$
 (II1)

В (П1) опущено несущественное постоянное слагаемое. Константы *C* и *D* зависят только от геометрии включения и, вообще говоря, комплексны: C = C' + C'', D = D' + D''. Согласно [9,10], через эти константы выражаются составляющие дипольного тензора поляризуемости Â:

$$\Lambda_{xx} = -1/2(\lambda |C|^2 + C'D' - C''D''), \qquad (\Pi 2)$$

$$\Lambda_{yy} = -1/2(\lambda |C|^2 - C'D' + C''D''), \qquad (\Pi 3)$$

$$\Lambda_{xy} = \Lambda_{yx} = -1/2(C'D'' + C''D'). \tag{\Pi4}$$

Выражения (П2)–(П4) справедливы как для диэлектрических ($\lambda = +1$), так и для идеально проводящих ($\lambda = -1$) включений.

Из (П2)–(П4) для диэлектрических включений имеем

$$\operatorname{Sp}\Lambda_d = -|C|^2,\tag{\Pi5}$$

так что из (7) с учетом (П5) для величины N_I получаем следующее выражение:

$$N_I = \frac{1}{2\pi |C|^2}.$$
 (II6)

Обратная к w(z) из (П1) функция z = z(w) конформно отображает внешность единичного круга |w| > 1 на внешность исходной фигуры. Запишем разложение z(w) в виде

$$|w| > 1:$$
 $z = Cw + \sum_{n=1}^{\infty} a_n w^{-n},$ (II7)

где коэффициент C — тот же, что и в (П1). Следствием внешней теоремы площадей [15] для функции z(w) из (П7) в данном случае является соотношение (см., например, [10])

$$s = \pi |C|^2 - \pi \sum_{n=1}^{\infty} n |a_n|^2,$$
 (II8)

где s — площадь исходного включения. Согласно (П8), $s \leq \pi |C|^2$, так что отсюда с учетом (П6) следует искомое неравенство

$$N_I \le \frac{1}{2s}.\tag{\Pi9}$$

Как следует из (П8), знак равенства в (П9) возможен только тогда, когда $a_n = 0$ при всех *n*. Функция (П7) при этом имеет вид z = Cw, т.е. исходная фигура является кругом. В этом случае $N_I = 1/(2s) = 1/(2\pi R^2)$, что согласуется с выражением (9).

Заметим, что для фигуры, вписанной в круг радиуса R, диапазон изменения величины N_I может быть меньше, чем в (12),

$$\frac{1}{2\pi R^2} \le N_I \le \frac{1}{2s},\tag{\Pi10}$$

если ее площадь *s* больше, чем $\pi R^2/4$. Так, для квадрата со стороной 2*a* имеем $R = \sqrt{2}a$, и из (12) в этом случае следует, что $1/(4\pi a^2) < N_I < 1/(\pi a^2)$ или $0.08/a^2 < N_I < 0.32/a^2$. В то же время из (П10) имеем $1/(4\pi a^2) < N_I < 1/(8a^2)$ или $0.08/a^2 < N_I < 0.125/a^2$ при фактическом значении $N_I = 0.114/a^2$ (см. (10)).

Список литературы

- [1] Kirkpatrick S. // Rev. Mod. Phys. 1973. Vol. 45. N 4. P. 574.
- [2] Шкловский Б.И., Эфрос А.Л. // УФН. 1975. Т. 117. Вып. 3. С. 401.
- [3] Pike G.E., Seager C.H. // Phys. Rev. B. 1974. Vol. 10. N 4. P. 1421.
- Balberg I., Binenbaum N. // Phys. Rev. B. 1983. Vol. 28. N 7.
 P. 3799.
- [5] Xia W., Thorpe M.F. // Phys. Rev. A. 1988. Vol. 38. N 5. P. 2650.
- [6] Garboczi E.J., Thorpe M.F., De Vries M.S., Day A.R. // Phys. Rev. A. 1991. Vol. 43. N 12. P. 6473.
- [7] Dubson M.A., Garland J.C. // Phys. Rev. B. 1985. Vol. 32.
 N 11. P. 7621.
- [8] Tobochnik J., Dubson M.A., Wilson M.L., Thorpe M.F. // Phys. Rev. A. 1989. Vol. 40. N 9. P. 5370.
- [9] Балагуров Б.Я. // ЖТФ. 2011. Т. 81. Вып. 5. С. 1.
- [10] Балагуров Б.Я. // ЖТФ. 1982. Т. 52. Вып. 5. С. 850.
- [11] Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1965. 716 с.

- [12] Балагуров Б.Я. // ЖЭТФ. 2010. Т. 137. Вып. 2. С. 301.
- [13] Дыхне А.М. // ЖЭТФ. 1970. Т. 59. Вып. 1 (7). С. 110.
- [14] Балагуров Б.Я. // ЖЭТФ. 1981. Т. 81. Вып. 2(8). С. 665.
- [15] Привалов И.И. Введение в теорию функций комплексного переменного. М.: Наука, 1977. 444 с.